Gu Kaier, Shang Wenxuan, Wang Dingzhou
Department of Internal Medicine, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.
Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Front Med (Lausanne). 2025 Jul 11;12:1536090. doi: 10.3389/fmed.2025.1536090. eCollection 2025.
Acute pancreatitis (AP) severity assessment upon admission is crucial for prognosis, yet existing clinical scoring systems have limitations like delayed results, complexity, or low sensitivity. Obesity correlates with AP severity, but traditional body mass index (BMI) fails to accurately reflect visceral fat distribution. Although anthropometric indicators for visceral obesity offer alternatives, their predictive value for AP severity across all etiologies is poorly studied.
This retrospective cohort study analyzed 629 AP patients admitted to a tertiary hospital (2016-2023). Patients were classified as mild AP (MAP, = 531) or moderately severe/severe AP (MSAP/SAP, = 98) based on organ failure (modified Marshall score ≥ 2). Eleven anthropometric indicators and six clinical scoring systems were evaluated. Patients were randomly divided into training group ( = 441) and validation group ( = 188). LASSO regression identified key predictors from 37 clinical variables. Six machine learning (ML) models were built and evaluated using receiver operating characteristic (ROC) analysis, area under the ROC curve (AUC), calibration curves, and decision curve analysis (DCA).
Nine anthropometric indicators [waist circumference, body roundness index, BMI, conicity index, lipid accumulation products (LAP), waist triglyceride index (WTI), cardiometabolic index (CMI), visceral adiposity index (VAI), chinese visceral adiposity index] and all clinical scoring systems (Ranson score, Glasgow score, SIRS, BISAP, APACHE II, JSS) significantly differed between MAP and MSAP/SAP groups ( < 0.05). VAI demonstrated the highest predictive AUC among anthropometric indicators (0.737 vs. SIRS 0.750, JSS 0.815), but superior to Ranson score, Glasgow score, BISAP, and APACHE II. LAP, WTI, and CMI also showed strong AUCs (0.729, 0.722, 0.736 respectively). LASSO selected 15 variables. Among ML models, XGBoost model performed best on the validation group (AUC = 0.878), and relatively good calibration curve and DCA results.
VAI, CMI, LAP, and WTI are independent predictors of AP severity, with VAI showing the highest individual predictive capability among them. The XGBoost model, incorporating VAI and routinely available clinical variables, achieved excellent performance (AUC = 0.878) for early severity assessment, offering a potentially rapid and cost-effective clinical tool. This supports the utility of visceral obesity anthropometric indicators and ML models for improving early risk stratification in AP.
入院时急性胰腺炎(AP)严重程度评估对预后至关重要,但现有的临床评分系统存在诸如结果延迟、复杂或敏感性低等局限性。肥胖与AP严重程度相关,但传统的体重指数(BMI)无法准确反映内脏脂肪分布。尽管内脏肥胖的人体测量指标提供了替代方法,但它们对所有病因的AP严重程度的预测价值研究较少。
这项回顾性队列研究分析了一家三级医院(2016 - 2023年)收治的629例AP患者。根据器官功能衰竭(改良Marshall评分≥2)将患者分为轻症AP(MAP,n = 531)或中重症/重症AP(MSAP/SAP,n = 98)。评估了11项人体测量指标和6种临床评分系统。患者被随机分为训练组(n = 441)和验证组(n = 188)。LASSO回归从37个临床变量中确定关键预测因素。构建了6种机器学习(ML)模型,并使用受试者工作特征(ROC)分析、ROC曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)进行评估。
9项人体测量指标[腰围、身体圆润指数、BMI、锥度指数、脂质蓄积产物(LAP)、腰围甘油三酯指数(WTI)、心脏代谢指数(CMI)、内脏脂肪指数(VAI)、中国内脏脂肪指数]以及所有临床评分系统(Ranson评分、Glasgow评分、SIRS、BISAP、APACHE II、JSS)在MAP组和MSAP/SAP组之间存在显著差异(P < 0.05)。VAI在人体测量指标中显示出最高的预测AUC(0.737,而SIRS为0.750,JSS为0.815),但优于Ranson评分、Glasgow评分、BISAP和APACHE II。LAP、WTI和CMI也显示出较强的AUC(分别为0.729、0.722、0.736)。LASSO选择了15个变量。在ML模型中,XGBoost模型在验证组中表现最佳(AUC = 0.878),校准曲线和DCA结果相对较好。
VAI、CMI、LAP和WTI是AP严重程度的独立预测因素,其中VAI的个体预测能力最高。纳入VAI和常规可用临床变量的XGBoost模型在早期严重程度评估中表现出色(AUC = 0.878),提供了一种潜在的快速且具有成本效益的临床工具。这支持了内脏肥胖人体测量指标和ML模型在改善AP早期风险分层方面的实用性。