Suppr超能文献

通过P掺杂增强超薄g-CN上的载流子分离以提高光催化性能。

Boosting carrier separation over ultrathin g-CN by P doping for enhanced photocatalytic performance.

作者信息

Wang Xiangmei, Zhang Huimin, Li Hubing, Qiu Zhiling, Xiao Xin

机构信息

Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China.

Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.

出版信息

Nanoscale. 2025 Aug 15;17(32):18805-18821. doi: 10.1039/d5nr01002k.

Abstract

In light of the escalating severity of water pollution, the development of innovative and efficient photocatalytic materials has emerged as an urgent requirement. In this study, P-doped ultrathin g-CN was successfully synthesized using the chemical vapor deposition technique, specifically to enhance the photocatalytic degradation of the antibiotic tetracycline hydrochloride (TC) and the dye rhodamine B (RhB). The purpose of P doping was to modify the electronic structure of g-CN and increase its photocatalytic efficiency. The microstructure, chemical state, and light absorption properties of the material were extensively analyzed using advanced characterization techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The study revealed that P doping not only enhanced the structural stability of the nanosheets but also effectively broadened the material's light-responsive range by creating new band structures. Photocatalytic tests showed that under visible light irradiation, P-doped ultrathin g-CN demonstrated outstanding degradation efficiency against TC and RhB. Specifically, the doped catalyst reduced the concentrations of TC and RhB by more than 90% within 60 minutes, markedly surpassing the performance of undoped graphitic carbon nitride nanosheets. Moreover, the phosphorus-doped materials retained high catalytic activity and stability after repeated usage cycles. From a theoretical perspective, this research applied density functional theory (DFT) based on first principles to deeply investigate the electronic properties of P-doped ultrathin g-CN. The calculations disclosed that phosphorus doping led to modifications in the band structure, particularly an increase in localized states at the valence band top, which is vital for facilitating the effective separation of photogenerated electron-hole pairs. Additionally, the doping significantly altered the charge distribution on the material's surface, enhancing the catalyst's capacity to adsorb and activate molecules of TC and RhB. Overall, this research not only provided an efficient photocatalytic material for addressing persistent pollutants in aquatic environments but also explored the fundamental mechanisms by which P doping improves the photocatalytic performance of g-CN, thereby offering theoretical and experimental bases for the design of novel photocatalysts.

摘要

鉴于水污染问题日益严重,开发创新高效的光催化材料已成为迫切需求。在本研究中,采用化学气相沉积技术成功合成了P掺杂的超薄g-CN,专门用于提高抗生素盐酸四环素(TC)和染料罗丹明B(RhB)的光催化降解性能。P掺杂的目的是改变g-CN的电子结构并提高其光催化效率。使用高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)和紫外可见漫反射光谱(UV-vis DRS)等先进表征技术对材料的微观结构、化学状态和光吸收特性进行了广泛分析。研究表明,P掺杂不仅增强了纳米片的结构稳定性,还通过创建新的能带结构有效地拓宽了材料的光响应范围。光催化测试表明,在可见光照射下,P掺杂的超薄g-CN对TC和RhB表现出优异的降解效率。具体而言,掺杂催化剂在60分钟内将TC和RhB的浓度降低了90%以上,明显超过了未掺杂的石墨相氮化碳纳米片的性能。此外,磷掺杂材料在重复使用循环后仍保持高催化活性和稳定性。从理论角度来看,本研究应用基于第一性原理的密度泛函理论(DFT)深入研究了P掺杂超薄g-CN的电子性质。计算结果表明,磷掺杂导致能带结构发生变化,特别是价带顶处的局域态增加,这对于促进光生电子-空穴对的有效分离至关重要。此外,掺杂显著改变了材料表面的电荷分布,增强了催化剂吸附和活化TC和RhB分子的能力。总体而言,本研究不仅为解决水环境中的持久性污染物提供了一种高效的光催化材料,还探索了P掺杂提高g-CN光催化性能的基本机制,从而为新型光催化剂的设计提供了理论和实验基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验