Nisslbeck Tim N, Kouw Wouter M
Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
Entropy (Basel). 2025 Jun 26;27(7):679. doi: 10.3390/e27070679.
We present a Forney-style factor graph representation for the class of multivariate autoregressive models with exogenous inputs, and we propose an online Bayesian parameter-identification procedure based on message passing within this graph. We derive message-update rules for (1) a custom factor node that represents the multivariate autoregressive likelihood function and (2) the matrix normal Wishart distribution over the parameters. The flow of messages reveals how parameter uncertainty propagates into predictive uncertainty over the system outputs and how individual factor nodes and edges contribute to the overall model evidence. We evaluate the message-passing-based procedure on (i) a simulated autoregressive system, demonstrating convergence, and (ii) on a benchmark task, demonstrating strong predictive performance.
我们提出了一种针对具有外部输入的多元自回归模型类别的福尔尼风格因子图表示法,并基于此图内的消息传递提出了一种在线贝叶斯参数识别程序。我们推导了(1)表示多元自回归似然函数的自定义因子节点和(2)参数上的矩阵正态威沙特分布的消息更新规则。消息流揭示了参数不确定性如何传播到系统输出的预测不确定性中,以及各个因子节点和边如何对整体模型证据做出贡献。我们在(i)一个模拟自回归系统上评估基于消息传递的程序,证明其收敛性,以及在(ii)一个基准任务上评估,证明其具有强大的预测性能。