Suppr超能文献

KidneyNeXt:一种用于计算机断层扫描成像中多类肾肿瘤分类的轻量级卷积神经网络。

KidneyNeXt: A Lightweight Convolutional Neural Network for Multi-Class Renal Tumor Classification in Computed Tomography Imaging.

作者信息

Maçin Gulay, Genç Fatih, Taşcı Burak, Dogan Sengul, Tuncer Turker

机构信息

Department of Radiology, Beyhekim Training and Research Hospital, Konya 42060, Turkey.

Department of Nephrology, Elazig Fethi Sekin City Hospital, Elazig 23280, Turkey.

出版信息

J Clin Med. 2025 Jul 11;14(14):4929. doi: 10.3390/jcm14144929.

Abstract

: Renal tumors, encompassing benign, malignant, and normal variants, represent a significant diagnostic challenge in radiology due to their overlapping visual characteristics on computed tomography (CT) scans. Manual interpretation is time consuming and susceptible to inter-observer variability, emphasizing the need for automated, reliable classification systems to support early and accurate diagnosis. : We propose KidneyNeXt, a custom convolutional neural network (CNN) architecture designed for the multi-class classification of renal tumors using CT imaging. The model integrates multi-branch convolutional pathways, grouped convolutions, and hierarchical feature extraction blocks to enhance representational capacity. Transfer learning with ImageNet 1K pretraining and fine tuning was employed to improve generalization across diverse datasets. Performance was evaluated on three CT datasets: a clinically curated retrospective dataset (3199 images), the Kaggle CT KIDNEY dataset (12,446 images), and the KAUH: Jordan dataset (7770 images). All images were preprocessed to 224 × 224 resolution without data augmentation and split into training, validation, and test subsets. : Across all datasets, KidneyNeXt demonstrated outstanding classification performance. On the clinical dataset, the model achieved 99.76% accuracy and a macro-averaged F1 score of 99.71%. On the Kaggle CT KIDNEY dataset, it reached 99.96% accuracy and a 99.94% F1 score. Finally, evaluation on the KAUH dataset yielded 99.74% accuracy and a 99.72% F1 score. The model showed strong robustness against class imbalance and inter-class similarity, with minimal misclassification rates and stable learning dynamics throughout training. : The KidneyNeXt architecture offers a lightweight yet highly effective solution for the classification of renal tumors from CT images. Its consistently high performance across multiple datasets highlights its potential for real-world clinical deployment as a reliable decision support tool. Future work may explore the integration of clinical metadata and multimodal imaging to further enhance diagnostic precision and interpretability. Additionally, interpretability was addressed using Grad-CAM visualizations, which provided class-specific attention maps to highlight the regions contributing to the model's predictions.

摘要

肾肿瘤,包括良性、恶性和正常变体,由于其在计算机断层扫描(CT)上的视觉特征重叠,在放射学中是一项重大的诊断挑战。人工解读耗时且易受观察者间差异的影响,这凸显了需要自动化、可靠的分类系统来支持早期和准确的诊断。

我们提出了KidneyNeXt,这是一种定制的卷积神经网络(CNN)架构,旨在使用CT成像对肾肿瘤进行多类别分类。该模型集成了多分支卷积路径、分组卷积和分层特征提取块,以增强表征能力。采用基于ImageNet 1K预训练和微调的迁移学习来提高在不同数据集上的泛化能力。在三个CT数据集上评估了性能:一个临床整理的回顾性数据集(3199张图像)、Kaggle CT肾脏数据集(12446张图像)和KAUH:约旦数据集(7770张图像)。所有图像均预处理为224×224分辨率,不进行数据增强,并分为训练集、验证集和测试子集。

在所有数据集上,KidneyNeXt都表现出了出色的分类性能。在临床数据集上,该模型的准确率达到99.76%,宏平均F1分数为99.71%。在Kaggle CT肾脏数据集上,其准确率达到99.96%,F1分数为99.94%。最后,在KAUH数据集上的评估得出准确率为99.74%,F1分数为99.72%。该模型对类别不平衡和类间相似性表现出很强的鲁棒性,在整个训练过程中错误分类率极低且学习动态稳定。

KidneyNeXt架构为从CT图像中分类肾肿瘤提供了一种轻量级但高效的解决方案。它在多个数据集上始终保持的高性能凸显了其作为可靠决策支持工具在实际临床应用中的潜力。未来的工作可能会探索临床元数据和多模态成像的整合,以进一步提高诊断精度和可解释性。此外,使用Grad-CAM可视化解决了可解释性问题,它提供了特定类别的注意力图,以突出对模型预测有贡献的区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验