Tierney Simon M, Jeffries Thomas C, Koch Hauke
School of Science Western Sydney University Richmond New South Wales Australia.
CSIRO Environment Canberra Australian Capital Territory Australia.
Evol Appl. 2025 Jul 27;18(7):e70137. doi: 10.1111/eva.70137. eCollection 2025 Jul.
This review seeks a deeper functional understanding of wild bee microbiomes by focusing on a tribe of bees where natural history and behavioral ecology are well known but investigations of microbiology are just beginning. Opportunities to improve our future knowledge of pathogens to insect pollinators are explored-which have broad ramifications for crop pollination services, considering the current overdependence on a few managed species that face a multitude of health threats. The bee tribe Allodapini (Apidae: Xylocopinae) has the potential to offer comparative insights on the evolution of bee microbiomes, owing to a unique combination of life history traits relevant to pollination service delivery across sub-Saharan Africa, Southern Asia, and Australia. Allodapines exhibit facultatively social colony organization that offer evolutionary perspectives on the formation of group living not afforded by obligately eusocial insects, which have already transgressed the solitary-social threshold. Progressive provisioning of brood (in the absence of brood cells) facilitates a network exchange of nutrients (via trophallaxis) that we speculate may culminate in an intra-colony "network microbiome". A literature review of pathogenic (bacterial, fungal, viral, and protozoan) associates of allodapine bees reveals considerably less research than for carpenter (, ), bumble (), and honey () bees. Interrogation of published genomes (, ) discovered novel microsporidian and protozoan parasites and relatives of known bee bacteria (, ). Some exhibit microbial profiles typical of corbiculate bee core gut microbiomes, but no comparative evidence among allodapines was found. Allodapines visit flowers of 13 horticultural crops (fruits, vegetables, oilseeds, tree-nuts) and 50 native genera (predominantly Myrtaceae, Proteacae, Myoporaceae, Goodeniaceae). The ability to parse intrinsic and extrinsic factors influencing microbiome patterns within and between species means that allodapine bees provide the opportunity for an integrated approach to bee socio-eco-evo-immunology.
本综述旨在通过聚焦一个蜜蜂部落,更深入地从功能角度理解野生蜜蜂的微生物群落。该部落蜜蜂的自然史和行为生态学已为人熟知,但其微生物学研究才刚刚起步。文中探讨了增进我们对昆虫传粉者病原体未来认识的机会,鉴于当前对少数面临众多健康威胁的养殖蜜蜂品种过度依赖,这对作物授粉服务具有广泛影响。蜜蜂部落隧蜂族(蜜蜂科:木蜂亚科)有可能为蜜蜂微生物群落的进化提供比较性见解,这得益于其独特的生活史特征组合,这些特征与撒哈拉以南非洲、南亚和澳大利亚的授粉服务提供相关。隧蜂表现出兼性社会群体组织,这为群居生活的形成提供了进化视角,而专性真社会性昆虫已经跨越了独居 - 社会的界限,无法提供这样的视角。在没有巢室的情况下逐步为幼虫提供食物,促进了营养物质的网络交换(通过交哺现象),我们推测这可能最终形成群体内的“网络微生物群落”。对隧蜂的致病(细菌、真菌、病毒和原生动物)关联物的文献综述表明,与木蜂、熊蜂和蜜蜂相比,相关研究要少得多。对已发表基因组的研究发现了新型微孢子虫和原生动物寄生虫以及已知蜜蜂细菌的亲属。一些隧蜂表现出典型的有花粉筐蜜蜂核心肠道微生物群落的微生物特征,但未在隧蜂族中发现比较证据。隧蜂会访问13种园艺作物(水果、蔬菜、油籽、坚果)的花朵以及50个本地属(主要是桃金娘科、山龙眼科、苦槛蓝科、草海桐科)的花朵。解析影响物种内和物种间微生物群落模式的内在和外在因素的能力意味着,隧蜂为蜜蜂社会 - 生态 - 进化 - 免疫学的综合研究方法提供了机会。