Kacprzak Bartłomiej
Orto Med Sport, Łódź, Poland.
Orthop Rev (Pavia). 2025 Jul 26;17:140716. doi: 10.52965/001c.140716. eCollection 2025.
Anterior cruciate ligament (ACL) is vital for knee joint stability, and its rupture is a common injury, especially among athletes in high-demand sports involving pivoting and jumping. ACL reconstruction using grafts-autografts or allografts-is the standard treatment to restore knee function. However, graft healing within the bone tunnel is complex, involving coordinated molecular and cellular events across inflammatory, proliferative, and remodeling phases. During the inflammatory phase, immune cells like neutrophils, macrophages, and lymphocytes infiltrate the injury site, releasing pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) that initiate the healing cascade via pathways such as NF-κB. The proliferative phase features fibroblast and mesenchymal stem cell (MSC) activity, synthesizing extracellular matrix (ECM) components like type III collagen under the influence of growth factors (TGF-β, PDGF, bFGF) and promoting angiogenesis through VEGF. In the remodeling phase, tissue maturation occurs with the replacement of type III collagen by type I collagen, enhanced by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), and alignment of collagen fibers facilitated by mechanotransduction pathways involving integrins and focal adhesion kinase (FAK). Early mechanical loading plays a critical role by activating mechanosensitive receptors, leading to the upregulation of anabolic growth factors (IGF-1, PGE2) and promoting cellular responses that enhance graft integration, collagen fiber alignment, and biomechanical properties. Understanding the optimal timing, intensity, and type of mechanical loading is essential for developing effective rehabilitation protocols. Personalized rehabilitation strategies that consider patient-specific factors-such as age, activity level, genetic predispositions (e.g., variations in COL1A1, COL5A1, IL-6, TNF-α genes), and graft type-can optimize healing outcomes. Integrating molecular biology insights with mechanical loading approaches holds promise for improving ACL reconstruction success rates, reducing recovery times, and minimizing complications. Future research should focus on identifying novel molecular targets and signaling pathways (e.g., Wnt/β-catenin) involved in graft healing. Combining mechanical loading with biological augmentations-such as growth factors, stem cells, or gene therapy-may lead to synergistic therapies that further enhance graft integration and functional recovery.
前交叉韧带(ACL)对膝关节稳定性至关重要,其断裂是一种常见损伤,尤其在涉及 pivoting 和跳跃的高需求运动的运动员中。使用移植物(自体移植物或同种异体移植物)进行 ACL 重建是恢复膝关节功能的标准治疗方法。然而,骨隧道内的移植物愈合很复杂,涉及炎症、增殖和重塑阶段的分子和细胞事件的协调。在炎症阶段,中性粒细胞、巨噬细胞和淋巴细胞等免疫细胞浸润损伤部位,释放促炎细胞因子(IL-1β、TNF-α、IL-6),通过 NF-κB 等途径启动愈合级联反应。增殖阶段的特征是成纤维细胞和间充质干细胞(MSC)活动,在生长因子(TGF-β、PDGF、bFGF)的影响下合成细胞外基质(ECM)成分,如 III 型胶原蛋白,并通过 VEGF 促进血管生成。在重塑阶段,组织成熟伴随着 I 型胶原蛋白替代 III 型胶原蛋白,基质金属蛋白酶(MMPs)和金属蛋白酶组织抑制剂(TIMPs)增强了这种替代,并且涉及整合素和粘着斑激酶(FAK)的机械转导途径促进了胶原纤维的排列。早期机械负荷通过激活机械敏感受体发挥关键作用,导致合成代谢生长因子(IGF-1、PGE2)上调,并促进增强移植物整合、胶原纤维排列和生物力学性能的细胞反应。了解机械负荷的最佳时间、强度和类型对于制定有效的康复方案至关重要。考虑患者特定因素(如年龄、活动水平、遗传易感性(如 COL1A1、COL5A1、IL-6、TNF-α 基因的变异)和移植物类型)的个性化康复策略可以优化愈合结果。将分子生物学见解与机械负荷方法相结合有望提高 ACL 重建成功率、缩短恢复时间并减少并发症。未来的研究应专注于确定参与移植物愈合的新分子靶点和信号通路(如 Wnt/β-连环蛋白)。将机械负荷与生物增强剂(如生长因子、干细胞或基因治疗)相结合可能会产生协同疗法,进一步增强移植物整合和功能恢复。