Suppr超能文献

基于双向长短期记忆网络的脑电信号人类情绪分类

BiLSTM-Based Human Emotion Classification Using EEG Signal.

作者信息

Kumar Akhilesh, Kumar Awadhesh

机构信息

Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Computer Science, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

出版信息

Clin EEG Neurosci. 2025 Jul 31:15500594251364017. doi: 10.1177/15500594251364017.

Abstract

Emotion recognition using electroencephalography (EEG) signals has garnered significant attention due to its applications in affective computing, human-computer interaction, and healthcare. This study employs a Bidirectional Long Short-Term Memory (BiLSTM) network to classify emotions using EEG data from four well-established datasets: SEED, SEED-IV, SEED-V, and DEAP. By leveraging the temporal dependencies inherent in EEG signals, the BiLSTM model demonstrates robust learning of emotional states. The model achieved notable classification accuracies, with 92.30% for SEED, 99.98% for SEED-IV, 99.97% for SEED-V, and 88.33% for DEAP, showcasing its effectiveness across datasets with varying class distributions. The superior performance on SEED-IV and SEED-V underscores the BiLSTM's capability to capture bidirectional temporal information, which is crucial for emotion recognition tasks. Moreover, this work highlights the importance of utilizing diverse datasets to validate the generalizability of EEG-based emotion recognition models. The integration of both dimensional and discrete emotion models in the study demonstrates the framework's flexibility in addressing various emotion representation paradigms. Future directions include optimizing the framework for real-world applications, such as wearable EEG devices, and exploring transfer learning techniques to enhance cross-subject and cross-cultural adaptability. Overall, this study advances EEG-based emotion recognition methodologies, establishing a robust foundation for integrating affective computing into various domains and paving the way for real-time, reliable emotion recognition systems.

摘要

利用脑电图(EEG)信号进行情感识别因其在情感计算、人机交互和医疗保健中的应用而备受关注。本研究采用双向长短期记忆(BiLSTM)网络,使用来自四个成熟数据集(SEED、SEED-IV、SEED-V和DEAP)的EEG数据对情感进行分类。通过利用EEG信号中固有的时间依赖性,BiLSTM模型展示了对情感状态的强大学习能力。该模型取得了显著的分类准确率,SEED数据集为92.30%,SEED-IV数据集为99.98%,SEED-V数据集为99.97%,DEAP数据集为88.33%,展示了其在不同类别分布数据集上的有效性。在SEED-IV和SEED-V数据集上的卓越性能强调了BiLSTM捕捉双向时间信息的能力,这对于情感识别任务至关重要。此外,这项工作突出了利用多样化数据集来验证基于EEG的情感识别模型通用性的重要性。研究中维度情感模型和离散情感模型的整合展示了该框架在处理各种情感表示范式方面的灵活性。未来的方向包括为可穿戴EEG设备等实际应用优化框架,以及探索迁移学习技术以增强跨主体和跨文化的适应性。总体而言,本研究推进了基于EEG的情感识别方法,为将情感计算集成到各个领域奠定了坚实基础,并为实时、可靠的情感识别系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验