Suppr超能文献

用于膀胱癌治疗药物分子性质预测的图论和机器学习方法。

Graph theoretic and machine learning approaches in molecular property prediction of bladder cancer therapeutics.

作者信息

Qin Huiling, Hashem Atef F, Hanif Muhammad Farhan, Fiidow Osman Abubakar

机构信息

Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, China.

出版信息

Sci Rep. 2025 Jul 31;15(1):28025. doi: 10.1038/s41598-025-14175-w.

Abstract

This work introduces a hybrid computational approach in which degree-based topological descriptors are harnessed with the aid of advanced regression models and artificial neural networks (ANNs) to predict the crucial physicochemical properties of 17 drugs for the treatment of bladder cancer. Each molecule is assigned a molecular graph, from which a series of topological descriptors such as Zagreb indices, Randic index, Atom Bond Connectivity (ABC), and Symmetric Division Degree (SSD)are computed. These indices are used as input features by various regression models along with linear, cubic, and feedforward ANNs. The performance of the models is analyzed using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination [Formula: see text]. ANNs showed the best predictive performance with the [Formula: see text] value achieving 0.99. Moreover, SHAP (SHapley Additive exPlanations) analysis was used to explain the contribution of each descriptor toward the models' predictions. The findings validate the promise of the combination of graph-theoretic descriptors with the tools of machine learning to achieve solid and interpretable models of molecular property prediction, which hold the potential for drug discovery and optimization in oncologic applications.

摘要

这项工作引入了一种混合计算方法,其中基于度的拓扑描述符借助先进的回归模型和人工神经网络(ANN)来预测17种治疗膀胱癌药物的关键物理化学性质。每个分子都被赋予一个分子图,从该分子图中计算出一系列拓扑描述符,如 Zagreb 指数、Randic 指数、原子键连通性(ABC)和对称分割度(SSD)。这些指数与线性、三次和前馈人工神经网络一起被用作各种回归模型的输入特征。使用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数[公式:见原文]等指标来分析模型的性能。人工神经网络显示出最佳的预测性能,[公式:见原文]值达到0.99。此外,使用 SHAP(SHapley 加法解释)分析来解释每个描述符对模型预测的贡献。研究结果验证了将图论描述符与机器学习工具相结合以实现可靠且可解释的分子性质预测模型的前景,这在肿瘤学应用中的药物发现和优化方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验