Suppr超能文献

人工智能在皮肤癌检测中的表现:系统评价与荟萃分析的伞状综述

Performance of Artificial Intelligence in Skin Cancer Detection: An Umbrella Review of Systematic Reviews and Meta-Analyses.

作者信息

Karimzadhagh Sahand, Ghodous Shahriar, Robati Reza M, Abbaspour Elahe, Goldust Mohamad, Zaresharifi Nooshin, Zaresharifi Shirin

机构信息

Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Int J Dermatol. 2026 Jan;65(1):69-85. doi: 10.1111/ijd.17981. Epub 2025 Jul 31.

Abstract

Skin cancer has one of the highest incidence rates among malignancies. A shortage of clinical expertise, particularly in primary care, contrasts with the promising performance of artificial intelligence (AI) models in assisting clinicians. However, a comprehensive evaluation of AI-based diagnostic accuracy across various skin cancers is essential before integration into routine clinical practice. This umbrella review synthesizes evidence from meta-analyses assessing AI model performance in skin cancer detection. We searched PubMed, Web of Science, and Embase for relevant meta-analyses published until January 28, 2025. We included 11 meta-analyses comprising 551 studies from various skin cancer types, clinical settings, and diagnostic modalities. Convolutional neural networks (CNN) and support vector machines (SVM) demonstrated the highest diagnostic performance, with CNN achieving the highest overall accuracy. AI models distinguishing melanoma from melanocytic lesions outperformed those detecting melanoma across all skin cancers, with SVM achieving the highest sensitivity (91%) and specificity (94%). For squamous cell carcinoma, machine learning models trained on hyperspectral imaging demonstrated the highest sensitivity (90.1%) and specificity (92.65%). In differentiating benign from malignant lesions, models exhibited a sensitivity of 87% and a specificity of 86.4%. AI-assisted approaches significantly improved diagnostic accuracy among all clinicians, with generalists and nurse practitioners benefiting more than experienced dermatologists. Deep learning models in primary care, trained on smartphone images, achieved higher sensitivity (90%) and specificity (85%) than general practitioners. AI models significantly outperformed junior dermatologists and nonspecialists compared to senior dermatologists. Hence, integrating AI-assisted tools into clinical workflows, particularly in primary settings, can enhance diagnostic accuracy and minimize missed cases.

摘要

皮肤癌是恶性肿瘤中发病率最高的疾病之一。临床专业知识的短缺,尤其是在初级保健领域,与人工智能(AI)模型在协助临床医生方面的出色表现形成了鲜明对比。然而,在将基于AI的诊断准确性整合到常规临床实践之前,对各种皮肤癌进行全面评估至关重要。本综述综合了评估AI模型在皮肤癌检测中性能的荟萃分析证据。我们在PubMed、科学网和Embase中搜索了截至2025年1月28日发表的相关荟萃分析。我们纳入了11项荟萃分析,涵盖了来自各种皮肤癌类型、临床环境和诊断方式的551项研究。卷积神经网络(CNN)和支持向量机(SVM)表现出最高的诊断性能,其中CNN的总体准确率最高。在区分黑色素瘤与黑色素细胞病变方面,AI模型的表现优于在所有皮肤癌中检测黑色素瘤的模型,SVM的灵敏度最高(91%),特异性最高(94%)。对于鳞状细胞癌,基于高光谱成像训练的机器学习模型表现出最高的灵敏度(90.1%)和特异性(92.65%)。在区分良性和恶性病变时,模型的灵敏度为87%,特异性为86.4%。AI辅助方法显著提高了所有临床医生的诊断准确性,全科医生和执业护士比经验丰富的皮肤科医生受益更多。在初级保健中,基于智能手机图像训练的深度学习模型比全科医生具有更高的灵敏度(90%)和特异性(85%)。与资深皮肤科医生相比,AI模型在与初级皮肤科医生和非专科医生的对比中表现明显更优。因此,将AI辅助工具整合到临床工作流程中,尤其是在初级医疗环境中,可以提高诊断准确性并减少漏诊病例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验