Suppr超能文献

利用不完整访谈数据预测校园暴力风险:一种自动评估方法。

Forecasting school violence risk with incomplete interview data: an automated assessment approach.

作者信息

Kanbar Lara J, Osborn Alexander, Cifuentes Andrew, Combs Jennifer, Sorter Michael, Barzman Drew, Dexheimer Judith W

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.

Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.

出版信息

JAMIA Open. 2025 Jul 31;8(4):ooaf084. doi: 10.1093/jamiaopen/ooaf084. eCollection 2025 Aug.

Abstract

OBJECTIVES

School violence risk prevention in the United States relies on manual assessments that are time-consuming and subjective. We developed a machine learning algorithm named Automated RIsk Assessment (ARIA), using natural language processing (NLP) to find linguistic patterns in standardized interview questions that can predict risk of aggression. Our goal was to evaluate the incremental change in performance with the addition of each question to simulate situations where interviews cannot be completed.

MATERIALS AND METHODS

Students were interviewed with 2 14-question risk assessments, the Brief Rating of Aggression by Children and Adolescents (BRACHA) and the School Safety Scale (SSS), that encouraged open-ended answers to the interview questions. The reference standard was defined as the subject's likeliness to display aggression in the future as determined by a forensic psychiatrist. Feature sets were extracted to represent the addition of 1 question at a time in a typical interview, up to and including the 28 total main questions along with other sub-questions that arose. The ARIA NLP pipeline tokenized each feature set, then extracted n-gram features (  5) that captured contextual and semantic information. The features were evaluated using an L2-regularized logistic regression classifier and L2-regularized support vector machine (L2-SVM) classifier.

RESULTS

Between May 1, 2015 and February 6, 2021, 412 assessment interviews were conducted. When compared to clinical judgement, ARIA performed with an area under the Receiver Operating Characteristic curve of 0.9 after 10 BRACHA questions, suggesting that it remains powerful even with truncated interviews. The full BRACHA had similar performance to the BRACHA + SSS assessment.

DISCUSSION AND CONCLUSION

ARIA could use incomplete risk assessment interviews to provide modest recommendations even if interview completion is not possible. This could help to reduce the burden for the social worker or school counselor who may be using ARIA in less-than-ideal conditions.

摘要

目的

美国校园暴力风险预防依赖于耗时且主观的人工评估。我们开发了一种名为自动风险评估(ARIA)的机器学习算法,利用自然语言处理(NLP)在标准化访谈问题中寻找语言模式,以预测攻击风险。我们的目标是评估随着每个问题的添加,性能的增量变化,以模拟无法完成访谈的情况。

材料与方法

对学生进行了两次包含14个问题的风险评估访谈,即儿童青少年攻击性简要评定量表(BRACHA)和学校安全量表(SSS),这两个量表鼓励对访谈问题给出开放式答案。参考标准被定义为法医精神病学家确定的受试者未来表现出攻击行为的可能性。提取特征集以表示在典型访谈中每次添加1个问题的情况,直至并包括总共28个主要问题以及出现的其他子问题。ARIA NLP管道对每个特征集进行分词,然后提取捕获上下文和语义信息的n元语法特征(n = 5)。使用L2正则化逻辑回归分类器和L2正则化支持向量机(L2 - SVM)分类器对特征进行评估。

结果

在2015年5月1日至2021年2月6日期间,共进行了412次评估访谈。与临床判断相比,在提出10个BRACHA问题后,ARIA的受试者工作特征曲线下面积为0.9,这表明即使访谈被截断,它仍然很有效。完整的BRACHA与BRACHA + SSS评估的性能相似。

讨论与结论

即使无法完成访谈,ARIA也可以利用不完整的风险评估访谈提供适度的建议。这有助于减轻可能在不太理想条件下使用ARIA的社会工作者或学校辅导员的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acfd/12313018/0e8f4b4aabcf/ooaf084f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验