Suppr超能文献

人为干扰和气候对印度东北部轮作耕种地区竹子分布的影响。

Impact of anthropogenic disturbance and climate on bamboo distribution in shifting cultivation landscapes of Northeast India.

作者信息

Tamang Muna, Nandy Subrata, Srinet Ritika, Bhat Yamini, Padalia Hitendra, Nath Arun Jyoti, Das Ashesh Kumar, Singh R P

机构信息

Indian Institute of Remote Sensing, Indian Space Research Organisation, Department of Space, Govt. of India, Dehradun, 248001, India.

ICFRE - Rain Forest Research Institute, Jorhat, 785101, Assam, India.

出版信息

Sci Rep. 2025 Aug 3;15(1):28290. doi: 10.1038/s41598-025-13075-3.

Abstract

Bamboo, a multipurpose plant species found in tropical and subtropical regions, covers about 1% of the earth's landmass and provides numerous ecosystem services. This study focuses on mapping the distribution of bamboo in the Dima Hasao district of Assam, India, and examines the influence of anthropogenic disturbance and climate on bamboo occurrence in shifting cultivation landscapes. Bamboo distribution was mapped using spectral and textural variables from Sentinel-2 imagery (March and November 2022) and topographic data from the Shuttle Radar Topography Mission digital elevation model. Three machine learning classifiers, random forest (RF), support vector machine, and artificial neural network, were evaluated for bamboo classification. Among these, the RF classifier achieved the highest performance, with an overall accuracy of 87.54%, a producer's accuracy of 86.86%, and a user's accuracy of 83.35% when using the combination of March and November median imagery. The short-wave infra red (SWIR) bands were found to be important variables for land use land cover classification, while the normalized difference vegetation index based on the vegetation red edge 2 band (NDVIre2) emerged as the most significant variable for bamboo mapping. A disturbance map for bamboo growing areas was also generated using LandTrendr in Google Earth Engine based on the normalized burn ratio (NBR) from time-series Landsat data and validated using TimeSync. The results indicated that approximately 78.9% of bamboo-growing areas in the district had undergone high disturbance, largely attributed to frequent practice of shifting cultivation. The influence of climatic drivers on bamboo distribution was analyzed using the RF algorithm, and vapour pressure deficit was identified as the most influential factor. This first-of-its-kind study in Northeast India offers key insights into bamboo ecology and demonstrates the value of advanced classifiers in improving distribution accuracy. The study has important implications for forest policy and landscape management in shifting cultivation regions, providing a foundation for conservation planning, climate adaptation, and contributions to climate resilience and relevant UN Sustainable Development Goals.

摘要

竹子是一种生长在热带和亚热带地区的多用途植物物种,覆盖了地球约1%的陆地面积,并提供众多生态系统服务。本研究聚焦于绘制印度阿萨姆邦迪马哈索区竹子的分布情况,并考察人为干扰和气候对轮作耕种景观中竹子出现情况的影响。利用哨兵2号影像(2022年3月和11月)的光谱和纹理变量以及航天飞机雷达地形测绘任务数字高程模型的地形数据绘制竹子分布。对三种机器学习分类器,即随机森林(RF)、支持向量机和人工神经网络进行竹子分类评估。其中,RF分类器性能最佳,在使用3月和11月中值影像组合时,总体精度为87.54%,生产者精度为86.86%,用户精度为83.35%。短波红外(SWIR)波段被发现是土地利用土地覆盖分类的重要变量,而基于植被红边2波段的归一化差异植被指数(NDVIre2)则成为竹子测绘中最重要的变量。还利用谷歌地球引擎中的LandTrendr,基于时间序列陆地卫星数据的归一化燃烧比(NBR)生成了竹子种植区的干扰图,并使用TimeSync进行了验证。结果表明,该地区约78.9%的竹子种植区受到了高度干扰,这主要归因于频繁的轮作耕种。利用RF算法分析了气候驱动因素对竹子分布的影响,发现水汽压亏缺是最具影响力的因素。印度东北部的这项开创性研究为竹子生态学提供了关键见解,并展示了先进分类器在提高分布精度方面的价值。该研究对轮作耕种地区的森林政策和景观管理具有重要意义,为保护规划、气候适应以及对气候恢复力和联合国相关可持续发展目标的贡献奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d742/12319109/4122ced8b3bd/41598_2025_13075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验