Suppr超能文献

对偶缺陷的融合3-范畴

Fusion 3-Categories for Duality Defects.

作者信息

Bhardwaj Lakshya, Décoppet Thibault, Schäfer-Nameki Sakura, Yu Matthew

机构信息

Mathematical Institute, University of Oxford, OX2 6GG Oxford, UK.

Department of Mathematics, Harvard University, Cambridge, MA 02138 USA.

出版信息

Commun Math Phys. 2025;406(9):208. doi: 10.1007/s00220-025-05388-1. Epub 2025 Aug 1.

Abstract

We study the fusion 3-categorical symmetries for quantum theories in (3+1)-dimensions with self-duality defects. Such defects have been realized physically by half-space gauging in theories with one-form symmetries [1] for an abelian group , and have found applications in the continuum and the lattice. These fusion 3-categories will be called (generalized) Tambara-Yamagami fusion 3-categories (), in analogy to the TY fusion 1-categories. We consider the Brauer-Picard and Picard 4-groupoids to construct these categories using a 3-categorical version of the extension theory introduced by Etingof, Nikshych and Ostrik. These two 4-groupoids correspond to looking at the construction of duality defects either directly from the 4d point of view, or from the point of view of the 5d Symmetry Topological Field Theory (SymTFT). At this categorical level, the Witt group of non-degenerate braided fusion 1-categories naturally appears in the aforementioned 4-groupoids and represents enrichments of standard duality defects by (2+1)d TFTs. Our main objective is to study graded extensions of the fusion 3-category for some finite abelian group , which is the symmetry category associated to a (3+1)d theory with 1-form symmetry . Firstly, we do so explicitly using invertible bimodule 3-categories and the Brauer-Picard 4-groupoid. Secondly, we use that the Brauer-Picard 4-groupoid of can be identified with the Picard 4-groupoid of its Drinfeld center. Moreover, the Drinfeld center of , which represents topological defects of the SymTFT, is completely described by a sylleptic strongly fusion 2-category formed by topological surface defects of the SymTFT. These are classified by a finite abelian group equipped with an alternating 2-form. We relate the Picard 4-groupoid of the corresponding braided fusion 3-categories with a generalized Witt group constructed from certain graded braided fusion 1-categories using a twisted Deligne tensor product. In tractable examples, we are able to carry out explicit computations so as to understand the categorical structure of the and graded categories.

摘要

我们研究具有自对偶缺陷的(3 + 1)维量子理论的融合3 - 范畴对称性。此类缺陷已在具有阿贝尔群的单形式对称性理论中通过半空间规范在物理上得以实现[1],并已在连续统和晶格中得到应用。这些融合3 - 范畴将被称为(广义)Tambara - Yamagami融合3 - 范畴(),类似于TY融合1 - 范畴。我们考虑使用由Etingof、Nikshych和Ostrik引入的扩展理论的3 - 范畴版本的Brauer - Picard和Picard 4 - 群胚来构建这些范畴。这两个4 - 群胚分别对应于要么直接从4维视角,要么从5维对称拓扑场论(SymTFT)视角来审视对偶缺陷的构建。在这个范畴层面,非退化辫合融合1 - 范畴的Witt群自然地出现在上述4 - 群胚中,并表示由(2 + 1)维TFT对标准对偶缺陷的丰富。我们的主要目标是研究对于某个有限阿贝尔群 的融合3 - 范畴的分次扩展,它是与具有单形式对称性的(3 + 1)维理论相关联的对称范畴。首先,我们使用可逆双模范畴3 - 范畴和Brauer - Picard 4 - 群胚明确地进行研究。其次,我们利用 的Brauer - Picard 4 - 群胚可以与其Drinfeld中心的Picard 4 - 群胚等同这一性质。此外, 的Drinfeld中心表示SymTFT的拓扑缺陷,它完全由由SymTFT的拓扑表面缺陷形成的一个sylleptic强融合2 - 范畴所描述。这些由配备一个交错2 - 形式的有限阿贝尔群进行分类。我们将相应辫合融合3 - 范畴的Picard 4 - 群胚与使用扭曲的Deligne张量积从某些分次辫合融合1 - 范畴构建的广义Witt群联系起来。在易于处理的例子中,我们能够进行明确的计算,以便理解 和 分次范畴的范畴结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5935/12316798/f87652b99f90/220_2025_5388_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验