Suppr超能文献

一种用于同时编码时空动态的多突触发放神经元。

A multisynaptic spiking neuron for simultaneously encoding spatiotemporal dynamics.

作者信息

Fan Liangwei, Shen Hui, Lian Xiangkai, Li Yulin, Yao Man, Li Guoqi, Hu Dewen

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China.

Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2025 Aug 4;16(1):7155. doi: 10.1038/s41467-025-62251-6.

Abstract

Spiking neural networks (SNNs) are biologically more plausible and computationally more powerful than artificial neural networks due to their intrinsic temporal dynamics. However, vanilla spiking neurons struggle to simultaneously encode spatiotemporal dynamics of inputs. Inspired by biological multisynaptic connections, we propose the Multi-Synaptic Firing (MSF) neuron, where an axon can establish multiple synapses with different thresholds on a postsynaptic neuron. MSF neurons jointly encode spatial intensity via firing rates and temporal dynamics via spike timing, and generalize Leaky Integrate-and-Fire (LIF) and ReLU neurons as special cases. We derive optimal threshold selection and parameter optimization criteria for surrogate gradients, enabling scalable deep MSF-based SNNs without performance degradation. Extensive experiments across various benchmarks show that MSF neurons significantly outperform LIF neurons in accuracy while preserving low power, low latency, and high execution efficiency, and surpass ReLU neurons in event-driven tasks. Overall, this work advances neuromorphic computing toward real-world spatiotemporal applications.

摘要

脉冲神经网络(SNN)由于其内在的时间动态特性,在生物学上更具合理性,在计算上也比人工神经网络更强大。然而,普通的脉冲神经元难以同时编码输入的时空动态。受生物多突触连接的启发,我们提出了多突触激发(MSF)神经元,其中一个轴突可以在突触后神经元上建立多个具有不同阈值的突触。MSF神经元通过激发率联合编码空间强度,通过脉冲时间编码时间动态,并将泄漏积分发放(LIF)和ReLU神经元作为特殊情况进行推广。我们推导了替代梯度的最优阈值选择和参数优化标准,实现了基于深度MSF的可扩展SNN,且性能不下降。在各种基准上进行的大量实验表明,MSF神经元在保持低功耗、低延迟和高执行效率的同时,在准确率上显著优于LIF神经元,并且在事件驱动任务中超过ReLU神经元。总体而言,这项工作推动了神经形态计算向实际时空应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef2/12322120/1ee5c19d3edb/41467_2025_62251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验