Suppr超能文献

具有车网互联功能的自适应最大功率点跟踪控制光伏辅助电动汽车充电系统的硬件在环实现

Hardware-in-loop implementation of an adaptive MPPT controlled PV-assisted EV charging system with vehicle-to-grid integration.

作者信息

Singh Surabhi, Bansal Hari Om

机构信息

Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.

出版信息

Sci Rep. 2025 Aug 5;15(1):28565. doi: 10.1038/s41598-025-12508-3.

Abstract

The penetration of electric vehicles (EVs) into society needs extensive charging infrastructure. The existing charging system solely depends on the grid supply, which is essentially fossil fuel-dependent and leads to carbon emissions and environmental pollution. This can be minimized by incorporating renewable energy into the charging grid. This article presents a charging scheme combining photovoltaic (PV) and grid, offering a clean and dependable charging plan to sustain green transport. The proposed work presents the modelling and controlling a 10 kW EV charging/discharging framework integrating PV and grid. This work has multi-fold objectives: i) the development of an intelligent hybrid maximum power point tracking (MPPT) strategy, ii) the design of a fuzzy logic controlled bidirectional charger, iii) the setup of a PV-grid integrated charging system, and iv) the implementation of vehicle-to-grid (V2G) operation. The proposed charging system utilizes PV power and seamlessly switches to grid power whenever required. Since the performance of the PV source is affected by varying temperatures and irradiance, MPPT methods are needed to extract maximum power from the PV source. This paper developed and compared perturb and observe (P&O), Particle swarm optimization (PSO), and hybrid PSO + Adaptive neuro-fuzzy inference system (ANFIS) based algorithm for MPPT. The findings indicate that the PSO + ANFIS-driven method offers the highest tracking efficiency of 99.5%. This algorithm is also tested under dynamic partial shading conditions (PSC) to ensure robustness, and it led to achieving fast convergence and high efficiency despite multiple power peaks. In addition, the designed bidirectional charging system maximizes solar energy collection, minimizes the charging cost, and improves grid stability through demand balancing. The overall system is validated in a hardware-in-loop real-time environment through FPGA-based OPAL-RT.

摘要

电动汽车(EV)融入社会需要广泛的充电基础设施。现有的充电系统完全依赖电网供电,而电网本质上依赖化石燃料,会导致碳排放和环境污染。通过将可再生能源并入充电电网,这种情况可以得到最大限度的缓解。本文提出了一种结合光伏(PV)和电网的充电方案,提供了一个清洁可靠的充电计划以维持绿色交通。所提出的工作展示了对一个集成光伏和电网的10千瓦电动汽车充电/放电框架进行建模和控制。这项工作有多个目标:i)开发一种智能混合最大功率点跟踪(MPPT)策略,ii)设计一个模糊逻辑控制的双向充电器,iii)建立一个光伏-电网集成充电系统,以及iv)实现车辆到电网(V2G)运行。所提出的充电系统利用光伏发电,并在需要时无缝切换到电网供电。由于光伏电源的性能受温度和辐照度变化的影响,需要采用MPPT方法从光伏电源中提取最大功率。本文针对MPPT开发并比较了扰动观察法(P&O)、粒子群优化(PSO)以及基于混合PSO+自适应神经模糊推理系统(ANFIS)的算法。研究结果表明,由PSO+ANFIS驱动的方法具有99.5%的最高跟踪效率。该算法还在动态部分阴影条件(PSC)下进行了测试以确保鲁棒性,并且尽管存在多个功率峰值,它仍能实现快速收敛和高效率。此外,所设计的双向充电系统能最大限度地收集太阳能,将充电成本降至最低,并通过需求平衡提高电网稳定性。整个系统通过基于FPGA的OPAL-RT在硬件在环实时环境中得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/724e/12325712/de00e2b399bc/41598_2025_12508_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验