Chawla Anjali, Cakmakci Doruk, Fiori Laura M, Zang Wenmin, Maitra Malosree, Yang Jennie, Żurawek Dariusz, Frosi Gabriella, Rahimian Reza, Mitsuhashi Haruka, Davoli Maria Antonietta, Denniston Ryan, Chen Gary Gang, Yerko Volodymyr, Mash Deborah, Girdhar Kiran, Akbarian Schahram, Mechawar Naguib, Suderman Matthew, Li Yue, Nagy Corina, Turecki Gustavo
McGill Group for Suicide Studies, Douglas Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
Nat Genet. 2025 Aug;57(8):1890-1904. doi: 10.1038/s41588-025-02249-4. Epub 2025 Aug 5.
Genetic variants associated with major depressive disorder (MDD) are enriched in the regulatory genome. Here, we investigate gene-regulatory mechanisms underlying MDD compared to neurotypical controls by combining single-cell chromatin accessibility with gene expression in over 200,000 cells from the dorsolateral prefrontal cortex of 84 individuals. MDD-associated alterations in chromatin accessibility were prominent in deep-layer excitatory neurons characterized by transcription factor (TF) motif accessibility and binding of NR4A2, an activity-dependent TF reactive to stress. The same neurons were enriched for MDD-associated genetic variants, disrupting TF binding sites linked to genes that likely affect synaptic communication. Furthermore, a gray matter microglia cluster exhibited decreased accessibility in individuals with MDD at binding sites bound by TFs known to regulate immune homeostasis. Finally, we identified gene-regulatory effects of MDD-risk variants using sequence-based accessibility predictions, donor-specific genotypes and cell-based assays. These findings shed light on the cell types and regulatory mechanisms through which genetic variation may increase the risk of MDD.
与重度抑郁症(MDD)相关的基因变异在调控基因组中富集。在此,我们通过将单细胞染色质可及性与来自84名个体背外侧前额叶皮质的超过20万个细胞中的基因表达相结合,研究与典型神经对照组相比MDD潜在的基因调控机制。染色质可及性中与MDD相关的改变在深层兴奋性神经元中很突出,其特征为转录因子(TF)基序可及性以及NR4A2的结合,NR4A2是一种对应激有反应的活性依赖性TF。相同的神经元中富含与MDD相关的基因变异,破坏了与可能影响突触通讯的基因相关的TF结合位点。此外,一个灰质小胶质细胞簇在MDD个体中,于已知调节免疫稳态的TF结合位点处表现出可及性降低。最后,我们使用基于序列的可及性预测、供体特异性基因型和基于细胞的试验确定了MDD风险变异的基因调控效应。这些发现揭示了遗传变异可能增加MDD风险的细胞类型和调控机制。