Suppr超能文献

多尺度上下文曼巴:通过状态空间建模推进跨多站点功能磁共振成像数据集的精神疾病检测

Multiscale Contextual Mamba: Advancing Psychiatric Disorder Detection across Multisite Functional Magnetic Resonance Imaging Datasets via State Space Modeling.

作者信息

Li Shusheng, Bo Yang, Chen Yuchu, Cao Jianfeng, Bi Bo, Ma Ting, Ye Chenfei

机构信息

International Research Institute for Artificial Intelligence, Harbin Institute of Technology (Shenzhen), Shenzhen, China.

Huawei (Hong Kong), Hong Kong, China.

出版信息

Health Data Sci. 2025 Aug 5;5:0224. doi: 10.34133/hds.0224. eCollection 2025.

Abstract

Major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex and heterogeneous neuropsychiatric disorders with overlapping symptoms, presenting remarkable challenges for accurate diagnosis. Leveraging functional neuroimaging data offers an opportunity to develop more robust, data-driven approach for psychiatric disorder detection. However, existing methods often struggle to capture the long-term dependencies and dynamic patterns inherent in such data, particularly across diverse imaging sites. We propose Multiscale Contextual Mamba (MSC-Mamba), a Mamba-based model designed for capturing long-term dependencies in multivariate time-series data while maintaining linear scalability, allowing us to account for long-range interactions and subtle dynamic patterns within the brain's functional networks. One of the main advantages of MSC-Mamba is its ability to leverage the distinct characteristics of time-series data, allowing it to generate meaningful contextual information across various scales. This method effectively addresses both channel-mixing and channel-independence scenarios, facilitating the selection of relevant features for prediction by considering both global and local contexts at multiple scales. Two large-scale multisite functional magnetic resonance imaging datasets, including REST-meta-MDD ( = 1,642) and Autism Brain Imaging Data Exchange (ABIDE) ( = 1,022), were used to validate the performance of our proposed approach. MSC-Mamba has achieved state-of-the-art performance, with an accuracy of 69.91% for MDD detection and 73.08% for ASD detection. The results demonstrate the model's robust generalization across imaging sites and its sensitivity to intricate brain network dynamics. This paper demonstrates the potential of state-space models in advancing psychiatric neuroimaging research. The findings suggest that such models can significantly enhance detection accuracy for MDD and ASD, pointing toward more reliable, data-driven diagnostic tools in psychiatric disorder detection.

摘要

重度抑郁症(MDD)和自闭症谱系障碍(ASD)是复杂且异质性的神经精神疾病,症状存在重叠,给准确诊断带来了巨大挑战。利用功能神经成像数据为开发更强大的、数据驱动的精神疾病检测方法提供了契机。然而,现有方法往往难以捕捉此类数据中固有的长期依赖性和动态模式,尤其是在不同成像站点之间。我们提出了多尺度上下文曼巴(MSC-Mamba),这是一种基于曼巴的模型,旨在捕捉多元时间序列数据中的长期依赖性,同时保持线性可扩展性,使我们能够考虑大脑功能网络内的远程相互作用和微妙的动态模式。MSC-Mamba的主要优点之一是能够利用时间序列数据的独特特征,使其能够跨各种尺度生成有意义的上下文信息。该方法有效地解决了通道混合和通道独立的情况,通过在多个尺度上考虑全局和局部上下文来促进相关特征的选择以进行预测。使用了两个大规模多站点功能磁共振成像数据集,包括REST-meta-MDD(n = 1642)和自闭症大脑成像数据交换(ABIDE)(n = 1022)来验证我们提出的方法的性能。MSC-Mamba取得了领先的性能,在MDD检测中准确率为69.91%,在ASD检测中准确率为73.08%。结果证明了该模型在不同成像站点上的强大泛化能力及其对复杂脑网络动态的敏感性。本文展示了状态空间模型在推进精神神经成像研究方面的潜力。研究结果表明,此类模型可以显著提高MDD和ASD的检测准确率,为精神疾病检测中更可靠的数据驱动诊断工具指明了方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验