Bates Alexander Shakeel, Phelps Jasper S, Kim Minsu, Yang Helen H, Matsliah Arie, Ajabi Zaki, Perlman Eric, Delgado Kevin M, Osman Mohammed Abdal Monium, Salmon Christopher K, Gager Jay, Silverman Benjamin, Renauld Sophia, Collie Matthew F, Fan Jingxuan, Pacheco Diego A, Zhao Yunzhi, Patel Janki, Zhang Wenyi, Serratosa Capdevilla Laia, Roberts Ruairi Jv, Munnelly Eva J, Griggs Nina, Langley Helen, Moya-Llamas Borja, Maloney Ryan T, Yu Szi-Chieh, Sterling Amy R, Sorek Marissa, Kruk Krzysztof, Serafetinidis Nikitas, Dhawan Serene, Stuerner Tomke, Klemm Finja, Brooks Paul, Lesser Ellen, Jones Jessica M, Pierce-Lundgren Sara E, Lee Su-Yee, Luo Yichen, Cook Andrew P, McKim Theresa H, Kophs Emily C, Falt Tjalda, Negron Morales Alexa M, Burke Austin, Hebditch James, Willie Kyle P, Willie Ryan, Popovych Sergiy, Kemnitz Nico, Ih Dodam, Lee Kisuk, Lu Ran, Halageri Akhilesh, Bae J Alexander, Jourdan Ben, Schwartzman Gregory, Demarest Damian D, Behnke Emily, Bland Doug, Kristiansen Anne, Skelton Jaime, Stocks Tom, Garner Dustin, Salman Farzaan, Daly Kevin C, Hernandez Anthony, Kumar Sandeep, Dorkenwald Sven, Collman Forrest, Suver Marie P, Fenk Lisa M, Pankratz Michael J, Jefferis Gregory Sxe, Eichler Katharina, Seeds Andrew M, Hampel Stefanie, Agrawal Sweta, Zandawala Meet, Macrina Thomas, Adjavon Diane-Yayra, Funke Jan, Tuthill John C, Azevedo Anthony, Seung H Sebastian, de Bivort Benjamin L, Murthy Mala, Drugowitsch Jan, Wilson Rachel I, Lee Wei-Chung Allen
bioRxiv. 2025 Aug 2:2025.07.31.667571. doi: 10.1101/2025.07.31.667571.
Just as genomes revolutionized molecular genetics, connectomes (maps of neurons and synapses) are transforming neuroscience. To date, the only species with complete connectomes are worms and sea squirts (10 -10 synapses). By contrast, the fruit fly is more complex (10 synaptic connections), with a brain that supports learning and spatial memory and an intricate ventral nerve cord analogous to the vertebrate spinal cord . Here we report the first adult fly connectome that unites the brain and ventral nerve cord, and we leverage this resource to investigate principles of neural control. We show that effector cells (motor neurons, endocrine cells and efferent neurons targeting the viscera) are primarily influenced by local sensory cells in the same body part, forming local feedback loops. These local loops are linked by long-range circuits involving ascending and descending neurons organized into behavior-centric modules. Single ascending and descending neurons are often positioned to influence the voluntary movement of multiple body parts, together with endocrine cells or visceral organs that support those movements. Brain regions involved in learning and navigation supervise these circuits. These results reveal an architecture that is distributed, parallelized and embodied (tightly connected to effectors), reminiscent of distributed control architectures in engineered systems .
正如基因组彻底改变了分子遗传学一样,连接组(神经元和突触的图谱)正在改变神经科学。迄今为止,拥有完整连接组的唯一物种是蠕虫和海鞘(10¹⁰ 个突触)。相比之下,果蝇更为复杂(有10⁵ 个突触连接),其大脑支持学习和空间记忆,还有一条类似于脊椎动物脊髓的复杂腹神经索。在此,我们报告了首个将大脑和腹神经索整合在一起的成年果蝇连接组,并利用这一资源来研究神经控制原理。我们发现,效应细胞(运动神经元、内分泌细胞以及靶向内脏的传出神经元)主要受同一身体部位的局部感觉细胞影响,形成局部反馈回路。这些局部回路由涉及上行和下行神经元的长程回路相连,这些神经元被组织成以行为为中心的模块。单个上行和下行神经元常常处于这样的位置,即与支持这些运动的内分泌细胞或内脏器官一起影响多个身体部位的自主运动。参与学习和导航的脑区监督这些回路。这些结果揭示了一种分布式、并行化且具身化(与效应器紧密相连)的架构,这让人联想到工程系统中的分布式控制架构。