Du Xiaohui, Liu Chenyue, Ding Zefei, Zhao Yuan, Zhu Cunguang, Wang Yaoyao, Wang Pengpeng
Liaocheng University, Liaocheng, China.
Nanophotonics. 2025 Jun 30;14(15):2587-2603. doi: 10.1515/nanoph-2025-0087. eCollection 2025 Aug.
Recent advances in perovskite crystals have highlighted their exceptional optical properties, making them promising candidates for a wide range of photonic applications. However, the exploration of high-repetition-rate laser systems based on these materials remains underdeveloped, hindering their potential in ultrafast laser technologies and related fields such as optical communications and precision metrology. In this study, we present, for the first time, the saturable absorption characteristics of a novel organic-inorganic hybrid perovskite incorporating the heavy metal bismuth (Bi), specifically N-methylbenzothiazoleBiI (BtzBiI). The material was integrated as a saturable absorber (SA) into a passively mode-locking erbium-doped fiber laser. By harnessing the exceptional optical nonlinearity of BtzBiI-SA, we successfully achieved stable fundamental mode-locking, harmonic mode-locking, and bound-state soliton mode-locking within a single cavity. The fundamental mode-locking yielded pulses with a duration of 844 fs and a signal-to-noise ratio of 66.15 dB. Additionally, the 142nd-order harmonic solitons attained an impressive repetition rate of 1.3202 GHz. These results represent a significant step forward in the realization of high-repetition-rate fiber lasers utilizing perovskite materials. Our findings highlight the remarkable potential of BtzBiI as a high-performance nonlinear optical material, paving the way for next-generation ultrafast photonic devices.
钙钛矿晶体的最新进展凸显了其卓越的光学特性,使其成为众多光子应用的有潜力候选材料。然而,基于这些材料的高重复率激光系统的探索仍不充分,这阻碍了它们在超快激光技术以及光通信和精密计量等相关领域的潜力。在本研究中,我们首次展示了一种新型的含重金属铋(Bi)的有机 - 无机杂化钙钛矿,即N - 甲基苯并噻唑铋碘(BtzBiI)的饱和吸收特性。该材料被集成作为饱和吸收体(SA)应用于被动锁模掺铒光纤激光器。通过利用BtzBiI - SA卓越的光学非线性,我们在单个腔内成功实现了稳定的基模锁模、谐波锁模和束缚态孤子锁模。基模锁模产生了持续时间为844飞秒且信噪比为66.15分贝的脉冲。此外,第142阶谐波孤子实现了高达1.3202吉赫兹的重复率。这些结果代表了在利用钙钛矿材料实现高重复率光纤激光器方面迈出的重要一步。我们的发现突出了BtzBiI作为一种高性能非线性光学材料的显著潜力,为下一代超快光子器件铺平了道路。