Suppr超能文献

斑马鱼主动脉瓣的流固耦合模型。

A fluid-structure interaction model of the zebrafish aortic valve.

作者信息

Kaiser Alexander D, Wang Jing, Brown Aaron L, Zhu Enbo, Hsiai Tzung, Marsden Alison L

机构信息

Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States of America; Stanford Cardiovascular Institute, Stanford, CA, United States of America.

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States of America.

出版信息

J Biomech. 2025 Jun 11;190:112794. doi: 10.1016/j.jbiomech.2025.112794.

Abstract

The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish aortic valves and their interaction with blood. To circumvent these limitations, we took a largely first-principles approach called design-based elasticity that allows us to derive valve geometry, fiber orientation and material properties. In FSI simulations of an adult zebrafish aortic valve, these models produce realistic flow rates when driven by physiological pressures and demonstrate the spatiotemporal dynamics of valvular mechanical properties. These models can be used for future studies of zebrafish cardiac hemodynamics, development, and disease.

摘要

斑马鱼是研究心脏发育和疾病的一种有价值的模式生物,因为它在遗传学和解剖学方面与人类有许多共同之处,并且易于进行实验操作。计算流体-结构相互作用(FSI)模拟是研究心脏瓣膜在发育和疾病中的功能的一种有效且高度可控的手段。由于斑马鱼体型小,人们对其心脏瓣膜的力学特性知之甚少,这限制了现有的关于斑马鱼主动脉瓣及其与血液相互作用的计算研究。为了克服这些限制,我们采用了一种主要基于第一原理的方法,即基于设计的弹性理论,它使我们能够推导出瓣膜的几何形状、纤维取向和材料特性。在成年斑马鱼主动脉瓣的FSI模拟中,这些模型在生理压力驱动下产生了逼真的流速,并展示了瓣膜力学特性的时空动态。这些模型可用于未来对斑马鱼心脏血流动力学、发育和疾病的研究。

相似文献

本文引用的文献

1
Combined simulation and ex vivo assessment of free-edge length in bicuspidization repair for congenital aortic valve disease.
JTCVS Open. 2024 Sep 17;22:395-404. doi: 10.1016/j.xjon.2024.09.008. eCollection 2024 Dec.
3
Effect of graft sizing in valve-sparing aortic root replacement for bicuspid aortic valve: The Goldilocks ratio.
JTCVS Tech. 2024 Apr 16;25:1-7. doi: 10.1016/j.xjtc.2024.03.025. eCollection 2024 Jun.
4
Simulation-based design of bicuspidization of the aortic valve.
J Thorac Cardiovasc Surg. 2024 Sep;168(3):923-932.e4. doi: 10.1016/j.jtcvs.2023.12.027. Epub 2024 Jan 10.
5
Comparison of Immersed Boundary Simulations of Heart Valve Hemodynamics Against In Vitro 4D Flow MRI Data.
Ann Biomed Eng. 2023 Oct;51(10):2267-2288. doi: 10.1007/s10439-023-03266-2. Epub 2023 Jun 28.
6
Fluid-Structure Interaction Modeling of the Aortic Hemodynamics in Adult Zebrafish: A Pilot Study Based on Synchrotron X-Ray Tomography.
IEEE Trans Biomed Eng. 2023 Jul;70(7):2101-2110. doi: 10.1109/TBME.2023.3236488. Epub 2023 Jun 19.
7
Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves.
Ann Biomed Eng. 2022 Sep;50(9):1053-1072. doi: 10.1007/s10439-022-02983-4. Epub 2022 Jun 24.
9
Patient-Specific Quantification of Normal and Bicuspid Aortic Valve Leaflet Deformations from Clinically Derived Images.
Ann Biomed Eng. 2022 Jan;50(1):1-15. doi: 10.1007/s10439-021-02882-0. Epub 2022 Jan 7.
10
Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish.
Cardiovasc Res. 2022 Sep 20;118(12):2665-2687. doi: 10.1093/cvr/cvab310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验