Kaiser Alexander D, Wang Jing, Brown Aaron L, Zhu Enbo, Hsiai Tzung, Marsden Alison L
Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States of America; Stanford Cardiovascular Institute, Stanford, CA, United States of America.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States of America.
J Biomech. 2025 Jun 11;190:112794. doi: 10.1016/j.jbiomech.2025.112794.
The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish aortic valves and their interaction with blood. To circumvent these limitations, we took a largely first-principles approach called design-based elasticity that allows us to derive valve geometry, fiber orientation and material properties. In FSI simulations of an adult zebrafish aortic valve, these models produce realistic flow rates when driven by physiological pressures and demonstrate the spatiotemporal dynamics of valvular mechanical properties. These models can be used for future studies of zebrafish cardiac hemodynamics, development, and disease.
斑马鱼是研究心脏发育和疾病的一种有价值的模式生物,因为它在遗传学和解剖学方面与人类有许多共同之处,并且易于进行实验操作。计算流体-结构相互作用(FSI)模拟是研究心脏瓣膜在发育和疾病中的功能的一种有效且高度可控的手段。由于斑马鱼体型小,人们对其心脏瓣膜的力学特性知之甚少,这限制了现有的关于斑马鱼主动脉瓣及其与血液相互作用的计算研究。为了克服这些限制,我们采用了一种主要基于第一原理的方法,即基于设计的弹性理论,它使我们能够推导出瓣膜的几何形状、纤维取向和材料特性。在成年斑马鱼主动脉瓣的FSI模拟中,这些模型在生理压力驱动下产生了逼真的流速,并展示了瓣膜力学特性的时空动态。这些模型可用于未来对斑马鱼心脏血流动力学、发育和疾病的研究。