Suppr超能文献

通过深度改进的各种U-Net技术实现胸部X光图像的自动分割。

Automatic segmentation of chest X-ray images via deep-improved various U-Net techniques.

作者信息

Orenc Sedat, Ozerdem Mehmet Sirac, Acar Emrullah, Yilmaz Musa

机构信息

Electrical-Electronics Engineering Department, Batman University, Batman, Turkey.

Electrical-Electronics Engineering Department, Dicle University, Diyarbakır, Turkey.

出版信息

Digit Health. 2025 Aug 6;11:20552076251366855. doi: 10.1177/20552076251366855. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVES

Accurate segmentation of medical images is vital for effective disease diagnosis and treatment planning. This is especially important in resource-constrained environments. This study aimed to evaluate the performance of various U-Net-based deep learning architectures for chest X-ray (CXR) segmentation and identify the most effective model in terms of both accuracy and computational efficiency.

METHODS

We assessed the segmentation performance of eight U-Net variants: U-Net7, U-Net9, U-Net11, U-Net13, U-Net16, U-Net32, U-Net64, and U-Net128. The evaluation was conducted using a publicly available CXR dataset categorized into normal, COVID-19, and viral pneumonia classes. Each image was paired with a corresponding segmentation mask. Image preprocessing involved resizing, noise filtering, and normalization to standardize input quality. All models were trained under identical experimental conditions to ensure a fair comparison. Performance was evaluated using two key metrics: Intersection over Union (IoU) and Dice Coefficient (DC). Additionally, computational efficiency was measured by comparing the total number of trainable parameters and the training time for each model.

RESULTS

U-Net9 achieved the highest performance among all tested models. It recorded a DC of 0.98 and an IoU of 0.96, outperforming both shallower and deeper U-Net architectures. Models with increased depth or filter width, such as U-Net128, showed diminishing returns in accuracy. These models also incurred significantly higher computational costs. In contrast, U-Net16 and U-Net32 demonstrated reduced segmentation accuracy compared to U-Net9. Overall, U-Net9 provided the optimal balance between precision and computational efficiency for CXR segmentation tasks.

CONCLUSION

The U-Net9 architecture offers a superior solution for CXR image segmentation. It combines high segmentation accuracy with computational practicality, making it suitable for real-world applications. Its implementation can support radiologists by enabling faster and more reliable diagnoses. This can lead to improved clinical decision-making and reduced diagnostic delays. Future work will focus on integrating U-Net9 with multimodal imaging data, such as combining CXR with computerized tomography or MRI scans. Additionally, exploration of advanced architectures, including attention mechanisms and hybrid models, is planned to further enhance segmentation performance.

摘要

目标

医学图像的准确分割对于有效的疾病诊断和治疗规划至关重要。在资源有限的环境中,这一点尤为重要。本研究旨在评估各种基于U-Net的深度学习架构在胸部X光(CXR)分割方面的性能,并确定在准确性和计算效率方面最有效的模型。

方法

我们评估了八个U-Net变体的分割性能:U-Net7、U-Net9、U-Net11、U-Net13、U-Net16、U-Net32、U-Net64和U-Net128。使用一个公开可用的CXR数据集进行评估,该数据集分为正常、新冠肺炎和病毒性肺炎类别。每张图像都与相应的分割掩码配对。图像预处理包括调整大小、噪声过滤和归一化,以标准化输入质量。所有模型都在相同的实验条件下进行训练,以确保公平比较。使用两个关键指标评估性能:交并比(IoU)和骰子系数(DC)。此外,通过比较每个模型的可训练参数总数和训练时间来衡量计算效率。

结果

U-Net9在所有测试模型中表现最佳。它的DC为0.98,IoU为0.96,优于较浅和较深的U-Net架构。深度或滤波器宽度增加的模型,如U-Net128,在准确性方面的回报递减。这些模型的计算成本也显著更高。相比之下,U-Net16和U-Net32的分割准确性低于U-Net9。总体而言,U-Net9在CXR分割任务的精度和计算效率之间提供了最佳平衡。

结论

U-Net9架构为CXR图像分割提供了一个卓越的解决方案。它将高分割准确性与计算实用性相结合,使其适用于实际应用。其应用可以通过实现更快、更可靠的诊断来支持放射科医生。这可以改善临床决策并减少诊断延迟。未来的工作将集中于将U-Net9与多模态成像数据集成,例如将CXR与计算机断层扫描或磁共振成像扫描相结合。此外,计划探索包括注意力机制和混合模型在内的先进架构,以进一步提高分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/12329272/c081a26ff3d0/10.1177_20552076251366855-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验