Suppr超能文献

针对高危老年人群的超低功耗、可穿戴、加速浅层学习跌倒检测

Ultra low-power, wearable, accelerated shallow-learning fall detection for elderly at-risk persons.

作者信息

Tian Jingxiao, Mercier Patrick, Paolini Christopher

机构信息

Electrical and Computer Engineering Department at San Diego State University, 5500 Campanile Drive, San Diego, 92182, CA, USA.

Electrical and Computer Engineering Department at University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA.

出版信息

Smart Health (Amst). 2024 Sep;33. doi: 10.1016/j.smhl.2024.100498. Epub 2024 Jun 5.

Abstract

This work focuses on the development and manufacturing of a wireless, wearable, low-power fall detection sensor (FDS) designed to predict and detect falls in elderly at-risk individuals. Unintentional falls are a significant risk in this demographic, often resulting from diminished physical capabilities such as reduced hand grip strength and complications from conditions like arthritis, vertigo, and neuromuscular issues. To address this, we utilize advanced low-power field-programmable gate arrays (FPGAs) to implement a fixed-function neural network capable of categorizing activities of daily life (ADLs), including the detection of falls. This system employs a Convolutional Neural Network (CNN) model, trained and validated using the Caffe deep learning framework with data collected from human subjects experiments. This system integrates an ST Microelectronics LSM6DSOX inertial measurement unit (IMU) sensor, embedded with an ultra-low-power Lattice iCE40UP FPGA, which samples and stores joint acceleration and orientation rate. Additionally, we have acquired and published a dataset of 3D accelerometer and gyroscope measurements from predefined ADLs and falls, using volunteer human subjects. This innovative approach aims to enhance the safety and well-being of older adults by providing timely and accurate fall detection and prediction. In this paper, we present an innovative approach to utilizing a compact Convolutional Neural Network (CNN) core for accelerating convolutional operations on a machine learning model, suitable for deployment on an ultra-low power FPGA.

摘要

这项工作专注于开发和制造一种无线、可穿戴、低功耗的跌倒检测传感器(FDS),旨在预测和检测有跌倒风险的老年人的跌倒情况。意外跌倒在这一人群中是一个重大风险,通常是由于身体能力下降,如握力减弱,以及关节炎、眩晕和神经肌肉问题等疾病引发的并发症所致。为了解决这一问题,我们利用先进的低功耗现场可编程门阵列(FPGA)来实现一个固定功能的神经网络,该网络能够对日常生活活动(ADL)进行分类,包括跌倒检测。该系统采用卷积神经网络(CNN)模型,使用Caffe深度学习框架进行训练和验证,并采用从人体实验收集的数据。该系统集成了意法半导体的LSM6DSOX惯性测量单元(IMU)传感器,嵌入了超低功耗的莱迪思iCE40UP FPGA,用于采样和存储关节加速度和方向速率。此外,我们使用志愿者人体受试者获取并发布了一个来自预定义ADL和跌倒的3D加速度计和陀螺仪测量数据集。这种创新方法旨在通过提供及时准确的跌倒检测和预测来提高老年人的安全性和福祉。在本文中,我们提出了一种创新方法,利用紧凑的卷积神经网络(CNN)核心来加速机器学习模型上的卷积运算,适用于部署在超低功耗FPGA上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fc/12327353/258d939773ab/nihms-2039993-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验