Suppr超能文献

层状纳米多孔石墨烯中的水传输动力学:深入的分子动力学研究

Water Transport Dynamics in Layered Nanoporous Graphene: An In-Depth Molecular Dynamics Study.

作者信息

Ouyang Jun, Sheng Yuebiao, Wang Wei

机构信息

School of Public Foundation, Bengbu Medical University, Bengbu 233030, China.

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Mi-crostructure, Department of Physics, Nanjing University, Nanjing 210093, China.

出版信息

J Phys Chem B. 2025 Aug 21;129(33):8521-8540. doi: 10.1021/acs.jpcb.5c00847. Epub 2025 Aug 8.

Abstract

Two-dimensional graphene nanomaterials are relevant to substantial applications for water purification and selective ionic sieving. However, it remains challenging to precisely tune the geometrical features of graphene and to isolate the effects of individual structural parameters experimentally, and also to have a deep understanding of the water-membrane interactions. Here in this work, we employ molecular dynamics simulations to investigate the water permeation through alternately stacked, three-layer graphene/graphene oxide membranes without externally applied pressure or electric fields. Our findings reveal a nuanced interplay among different key factors such as layer spacing, pore size, oxidation degree, pore modification, and temperature. The permeation dynamics of water molecules is fundamentally governed by long-range electrostatic interactions, which act in concert with van der Waals interactions to facilitate the transport process. We report that strategic pore alignment and an increased hydroxyl content enhance the water flux, with optimal performance observed at room temperature for well-spaced layers. Moreover, we found that the hydroxyl groups are more influential than the epoxy groups, and can modulate the energy landscape for water transport. We further demonstrated that precise control over pore geometry and chemical functionalization can dramatically improve the permeability, which furnishes insights for the rational design of graphene-based membranes. We also discussed flexible models and nonperiodic models, proving that interlayer spacing is the crucial determinant of water flux, with permeability being subject to the transport pathways of water molecules. Consequently, our study provides a roadmap for the development of high-performance membranes for advanced water treatment and selective separation applications.

摘要

二维石墨烯纳米材料在水净化和选择性离子筛分等大量应用中具有重要意义。然而,精确调整石墨烯的几何特征、通过实验分离各个结构参数的影响以及深入理解水与膜之间的相互作用仍然具有挑战性。在这项工作中,我们采用分子动力学模拟来研究在没有外部压力或电场的情况下,水透过交替堆叠的三层石墨烯/氧化石墨烯膜的渗透情况。我们的研究结果揭示了层间距、孔径、氧化程度、孔修饰和温度等不同关键因素之间细微的相互作用。水分子的渗透动力学从根本上受长程静电相互作用支配,这些相互作用与范德华相互作用协同作用以促进传输过程。我们报告称,战略性的孔排列和增加的羟基含量会提高水通量,在室温下对于间距合适的层观察到最佳性能。此外,我们发现羟基比环氧基更具影响力,并且可以调节水传输的能量态势。我们进一步证明,对孔几何形状和化学功能化的精确控制可以显著提高渗透率,这为基于石墨烯的膜的合理设计提供了见解。我们还讨论了灵活模型和非周期性模型,证明层间距是水通量的关键决定因素,渗透率取决于水分子的传输路径。因此,我们的研究为开发用于先进水处理和选择性分离应用的高性能膜提供了路线图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验