Suppr超能文献

使用随机块模型分析导致高碳排放的社区层面消费行为。

Analysing community-level spending behaviour contributing to high carbon emissions using stochastic block models.

作者信息

Simeonov Ognyan, Restocchi Valerio, Goddard Benjamin D

机构信息

School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton St, Newington, Edinburgh, UK.

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Rd, Edinburgh, UK.

出版信息

Sci Rep. 2025 Aug 8;15(1):29113. doi: 10.1038/s41598-025-14364-7.

Abstract

Large financial transaction datasets are increasingly used to estimate carbon emissions associated with individual spending. However, to effectively target high-emission spending areas and implement successful carbon reduction strategies, policymakers and financial institutions need to understand individual consumer spending behaviour. In this study, we describe an approach to identify spending patterns in large financial transaction datasets, using stochastic block modelling for community detection on a bipartite network. This is an effective method to form communities of consumers who share similar spending patterns across merchant categories, allowing us to identify the categories causing high carbon emissions for each group of consumers. We also introduce a modification to the weights of the bipartite network which allows us to keep the average community spending constant across different categories. The impact and applications of this study are twofold. First, it highlights the importance of transaction datasets and stochastic block modelling in providing insights for financial institutions in their efforts to decarbonise by identifying areas for targeted behavioural strategies for carbon reduction. Second, it provides researchers with a framework to examine how different factors, such as consumer spending patterns, energy usage, or transportation habits, interact with one another. This is done while keeping overall spending levels consistent across various communities, allowing for a controlled analysis of behavioural and economic impacts on carbon reduction efforts.

摘要

大型金融交易数据集越来越多地用于估计与个人消费相关的碳排放。然而,为了有效地瞄准高排放消费领域并实施成功的碳减排策略,政策制定者和金融机构需要了解个人消费者的消费行为。在本研究中,我们描述了一种在大型金融交易数据集中识别消费模式的方法,该方法使用随机块建模在二分网络上进行社区检测。这是一种有效的方法,用于形成在商家类别中具有相似消费模式的消费者群体,使我们能够识别出每组消费者中导致高碳排放的类别。我们还对二分网络的权重进行了修改,使我们能够在不同类别中保持社区平均消费不变。本研究的影响和应用有两个方面。首先,它强调了交易数据集和随机块建模在为金融机构提供见解方面的重要性,这些见解有助于金融机构通过识别有针对性的碳减排行为策略领域来努力实现脱碳。其次,它为研究人员提供了一个框架,用于研究不同因素,如消费者消费模式、能源使用或交通习惯,是如何相互作用的。这是在保持各个社区总体消费水平一致的情况下完成的,从而能够对碳减排努力的行为和经济影响进行可控分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5230/12334754/96ea8bb71fdc/41598_2025_14364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验