Chi Jian, Zhang Mingke, Zhang Puhon, Niu Guowang, Zheng Zhihao
Zhangjiakou Jingxi Cloud Computing Co. LTD, Zhangjiakou, 075000, China.
School of Information Engineering, Hebei University of Architecture, Zhangjiakou, 075000, China.
Sci Rep. 2025 Aug 8;15(1):29063. doi: 10.1038/s41598-025-14957-2.
This study addresses the challenges of missed and false detections in server motherboard defect identification, which arise from factors such as small target size, positional rotation deviations, and uneven scale distribution. To tackle these issues, we propose an enhanced detection model, EAE-DETR, which is based on an improved version of RT-DETR. Initially, we developed the CSP-EfficientVIM-CGLU module to enhance feature extraction capabilities while simultaneously reducing the model's parameter count through the implementation of dynamic gated convolution and global context modeling. Subsequently, we introduced the AIFI-ASSA module, designed to mitigate background noise interference and improve sensitivity to minor defects by employing an adaptive sparse self-attention mechanism. Lastly, we constructed the EUCB-SC upsampling module, which integrates depth convolution and channel shuffling strategies to enhance feature reconstruction efficiency. Experimental results on the PCBA-DET dataset indicate that EAE-DETR achieves a mean Average Precision (mAP) of 78.5% at IoU = 0.5 and 32.6% across IoU thresholds of 0.5 to 0.95, surpassing the baseline RT-DETR-R18 by 3.6% and 6.5%, respectively. Furthermore, the model demonstrates a reduction in parameter count by 21.7% and a decrease in computational load by 12.0%. On the PKU-Market-PCB dataset, the mAP50 reached 96.1%, and the mAP50:95 reached 65.1%.This model effectively facilitates high-precision and high-efficiency defect detection for server motherboards in complex industrial environments, thereby offering a robust solution for the intelligent manufacturing sector.
本研究探讨了服务器主板缺陷识别中漏检和误检的挑战,这些挑战源于小目标尺寸、位置旋转偏差和不均匀尺度分布等因素。为了解决这些问题,我们提出了一种增强检测模型EAE-DETR,它基于RT-DETR的改进版本。最初,我们开发了CSP-EfficientVIM-CGLU模块,以增强特征提取能力,同时通过实施动态门控卷积和全局上下文建模来减少模型的参数数量。随后,我们引入了AIFI-ASSA模块,旨在通过采用自适应稀疏自注意力机制来减轻背景噪声干扰并提高对微小缺陷的敏感性。最后,我们构建了EUCB-SC上采样模块,该模块集成了深度卷积和通道混洗策略以提高特征重建效率。在PCBA-DET数据集上的实验结果表明,EAE-DETR在IoU = 0.5时的平均精度均值(mAP)达到78.5%,在IoU阈值为0.5至0.95时为32.6%,分别比基线RT-DETR-R18高出3.6%和6.5%。此外,该模型的参数数量减少了21.7%,计算负载降低了12.0%。在PKU-Market-PCB数据集上,mAP50达到96.1%,mAP50:95达到65.1%。该模型有效地促进了复杂工业环境中服务器主板的高精度和高效率缺陷检测,从而为智能制造领域提供了一个强大的解决方案。