Çubuk Hasan, Jin Xinyi, Phipson Belinda, Marsh Joseph A, Rubin Alan F
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
Mol Syst Biol. 2025 Aug 8. doi: 10.1038/s44320-025-00137-x.
Deep mutational scanning (DMS) can systematically assess the effects of thousands of genetic variants in a single assay, providing insights into protein function, evolution, host-pathogen interactions, and clinical impacts. Accurate scoring of variant effects is crucial, yet the diversity of tools and experimental designs contributes considerable heterogeneity that complicates data analysis. Here, we review and compare 12 computational tools for processing DMS sequencing data and scoring variant effects. We systematically outline each tool's statistical approaches, supported experimental designs, input/output requirements, software implementation, visualisation capabilities, and key assumptions. By highlighting the strengths and limitations of these tools, we hope to guide researchers in selecting methods appropriate for their specific experiments. Furthermore, we discuss current challenges, including the need for standardised analysis protocols and sustainable software maintenance, as well as opportunities for future methods development. Ultimately, this review seeks to advance the application and adoption of DMS, facilitating deeper biological understanding and improved clinical translation.
深度突变扫描(DMS)可以在一次实验中系统地评估数千种基因变异的影响,为蛋白质功能、进化、宿主-病原体相互作用及临床影响提供见解。准确评估变异效应至关重要,但工具和实验设计的多样性导致了相当大的异质性,使数据分析变得复杂。在此,我们回顾并比较了12种用于处理DMS测序数据和评估变异效应的计算工具。我们系统地概述了每种工具的统计方法、支持的实验设计、输入/输出要求、软件实现、可视化能力及关键假设。通过强调这些工具的优势和局限性,我们希望能指导研究人员选择适合其特定实验的方法。此外,我们讨论了当前的挑战,包括对标准化分析方案和可持续软件维护的需求,以及未来方法开发的机遇。最终,本综述旨在推动DMS的应用和采用,促进更深入的生物学理解和改善临床转化。