Twala Bhekisipho
Office of the DVC for Digital Transformation, Tshwane University of Technology, Pretoria, South Africa.
Front Aging Neurosci. 2025 Jul 28;17:1638340. doi: 10.3389/fnagi.2025.1638340. eCollection 2025.
Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.
This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.
A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.
The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.
AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
帕金森病(PD)是全球最常见的神经退行性疾病之一,全球有超过1000万人受其影响。传统的诊断方法严重依赖临床观察和主观评估,常常导致诊断延迟或不准确。人工智能(AI)技术的出现为帕金森病管理中的精准诊断和个性化治疗策略提供了前所未有的机遇。
本研究旨在全面回顾当前人工智能在帕金森病诊断和治疗中的应用,评估现有方法,并展示一种新型多模态人工智能诊断框架的实验结果。
对2018年至2024年期间PubMed、IEEE Xplore和Web of Science数据库进行了系统综述,重点关注人工智能在帕金森病诊断和治疗中的应用。此外,我们开发并测试了一种混合机器学习模型,该模型结合深度学习、计算机视觉和自然语言处理技术,通过运动症状分析、语音模式识别和步态分析来评估帕金森病。
系统综述确定了127项相关研究,这些研究表明人工智能驱动的帕金森病诊断取得了显著进展,准确率在78%至96%之间。我们的实验框架在早期帕金森病检测中达到了94.2%的准确率,优于传统临床评估方法。综合方法在识别细微运动波动和预测治疗反应模式方面表现出特别的优势。
人工智能驱动的方法在革新帕金森病诊断和治疗个性化方面显示出巨大潜力。多种数据模式和先进机器学习算法的整合能够实现更早的检测、更准确的监测和优化的治疗干预。未来的研究应侧重于医疗系统的大规模临床验证和实施框架。