Zhou Yang, Wei Yu, Yin Jianli, Kong Deqiang, Li Wenjun, Wang Xinyi, Yao Yining, Huang Qin, Li Lei, Liu Mengyao, Qiao Longliang, Li Huiying, Zhao Junwei, Zhong Tao P, Li Dali, Duan Liting, Guan Ningzi, Ye Haifeng
Wuhu Hospital, Health Science Center, East China Normal University, Wuhu 241001, China.
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai 200241, China.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf758.
The Cre-loxP recombination system enables precise genome engineering; however, existing photoactivatable Cre tools suffer from several limitations, including low DNA recombination efficiency, background activation, slow activation kinetics, and poor tissue penetration. Here, we present REDMAPCre, a red-light-controlled split-Cre system based on the ΔPhyA/FHY1 interaction. REDMAPCre enables rapid activation (1-s illumination) and achieves an 85-fold increase in reporter expression over background levels. We demonstrate its efficient regulation of DNA recombination in mammalian cells and mice, as well as its compatibility with other inducible recombinase systems for Boolean logic-gated DNA recombination. Using a single-vector adeno-associated virus delivery system, we successfully induced REDMAPCre-mediated DNA recombination in mice. Furthermore, we generated a REDMAPCre transgenic mouse line and validated its efficient, light-dependent recombination across multiple organs. To explore its functional applications, REDMAPCre transgenic mice were crossed with isogenic Cre-dependent reporter mice, enabling optogenetic induction of insulin resistance and hepatic lipid accumulation via Cre-dependent overexpression of ubiquitin-like with PHD and RING finger domains 1 (UHRF1), as well as targeted cell ablation through diphtheria toxin fragment A expression. Collectively, REDMAPCre provides a powerful tool for achieving remote control of recombination and facilitating functional genetic studies in living systems.
Cre-loxP重组系统可实现精确的基因组工程;然而,现有的光激活Cre工具存在一些局限性,包括DNA重组效率低、背景激活、激活动力学缓慢以及组织穿透性差。在此,我们展示了REDMAPCre,一种基于ΔPhyA/FHY1相互作用的红光控制的分裂Cre系统。REDMAPCre能够快速激活(1秒光照),并且报告基因表达比背景水平提高了85倍。我们证明了它在哺乳动物细胞和小鼠中对DNA重组的有效调控,以及它与其他用于布尔逻辑门控DNA重组的诱导型重组酶系统的兼容性。使用单载体腺相关病毒递送系统,我们成功地在小鼠中诱导了REDMAPCre介导的DNA重组。此外,我们生成了一个REDMAPCre转基因小鼠品系,并验证了其在多个器官中的高效、光依赖性重组。为了探索其功能应用,将REDMAPCre转基因小鼠与同基因的Cre依赖性报告小鼠杂交,通过与含PHD和RING指结构域1的泛素样蛋白(UHRF1)的Cre依赖性过表达实现胰岛素抵抗和肝脂质积累的光遗传学诱导,以及通过白喉毒素片段A表达进行靶向细胞消融。总的来说,REDMAPCre为实现重组的远程控制和促进活体系统中的功能基因研究提供了一个强大的工具。