Suppr超能文献

基因表达时钟:一种用于从全基因组表达预测昼夜节律性的无监督深度学习方法。

Gene expression clock: an unsupervised deep learning approach for predicting circadian rhythmicity from whole genome expression.

作者信息

Ogholbake Aram Ansary, Cheng Qiang

机构信息

Department of Computer Science and Department of Internal Medicine, Institute for Biomedical Informatics (IBI), University of Kentucky, Lexington, KY, USA.

出版信息

Neural Comput Appl. 2024 Nov;36(33):20653-20670. doi: 10.1007/s00521-024-10316-w. Epub 2024 Aug 14.

Abstract

Circadian rhythms are driven by an internal molecular clock which controls physiological and behavioral processes. Disruptions in these rhythms have been associated with health issues. Therefore, studying circadian rhythms is crucial for understanding physiology, behavior, and pathophysiology. However, it is challenging to study circadian rhythms over gene expression data, due to a scarcity of time labels. In this paper, we propose a novel approach to predict the phases of untimed samples based on a deep neural network (DNN) architecture. This approach addresses two challenges: (1) prediction of sample phases and reliable identification of cyclic genes from high-dimensional expression data without relying on conserved circadian genes and (2) handling small sample-sized datasets. Our algorithm begins with initial gene screening to select candidate cyclic genes using a Minimum Distortion Embedding framework. This stage is then followed by greedy layer-wise pre-training of our DNN. Pre-training accomplishes two critical objectives: First, it initializes the hidden layers of our DNN model, enabling them to effectively capture features from the gene profiles with limited samples. Second, it provides suitable initial values for essential aspects of gene periodic oscillations. Subsequently, we fine-tune the pre-trained network to achieve precise sample phase predictions. Extensive experiments on both animal and human datasets show accurate and robust prediction of both sample phases and cyclic genes. Moreover, based on an Alzheimer's disease (AD) dataset, we identify a set of hub genes that show significant oscillations in cognitively normal subjects but had disruptions in AD, as well as their potential therapeutic targets.

摘要

昼夜节律由控制生理和行为过程的内部分子时钟驱动。这些节律的紊乱与健康问题相关。因此,研究昼夜节律对于理解生理学、行为学和病理生理学至关重要。然而,由于时间标签的稀缺,通过基因表达数据研究昼夜节律具有挑战性。在本文中,我们提出了一种基于深度神经网络(DNN)架构预测无时间标记样本相位的新方法。该方法解决了两个挑战:(1)在不依赖保守昼夜节律基因的情况下,从高维表达数据中预测样本相位并可靠识别循环基因,以及(2)处理小样本量数据集。我们的算法首先使用最小失真嵌入框架进行初始基因筛选,以选择候选循环基因。然后,对我们的DNN进行贪婪逐层预训练。预训练实现了两个关键目标:第一,它初始化我们的DNN模型的隐藏层,使其能够在有限样本的情况下有效地从基因图谱中捕获特征。第二,它为基因周期性振荡的关键方面提供合适的初始值。随后,我们对预训练网络进行微调,以实现精确的样本相位预测。在动物和人类数据集上进行的大量实验表明,对样本相位和循环基因的预测准确且稳健。此外,基于阿尔茨海默病(AD)数据集,我们确定了一组在认知正常受试者中显示出显著振荡但在AD中出现紊乱的枢纽基因,以及它们潜在的治疗靶点。

相似文献

本文引用的文献

9
Circadian rhythm disruption and mental health.昼夜节律紊乱与心理健康。
Transl Psychiatry. 2020 Jan 23;10(1):28. doi: 10.1038/s41398-020-0694-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验