Pfaffenrot Viktor, Bouyeure Antoine, Gomes Carlos Alexandre, Kashyap Sriranga, Axmacher Nikolai, Norris David G
Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr, University Bochum, Bochum, Germany.
Imaging Neurosci (Camb). 2025 Apr 8;3. doi: 10.1162/imag_a_00532. eCollection 2025.
The human hippocampus has been extensively studied at the macroscale using functional magnetic resonance imaging (fMRI) but the underlying microcircuits at the mesoscale (i.e., at the level of layers) are largely uninvestigated in humans. We target two questions fundamental to hippocampal laminar fMRI: How does the venous bias affect the interpretation of hippocampal laminar responses, and is it possible to establish a benchmark laminar fMRI experiment which robustly elicits single-subject hippocampal activation utilizing the most widely applied GRE-BOLD contrast. We comprehensively characterized GRE-BOLD responses as well as T*, tSNR, and physiological noise as a function of cortical depth in individual subfields of the human hippocampus. Our results show that the vascular architecture differs between subfields leading to subfield-specific laminar biases of GRE-BOLD responses. Using an autobiographical memory paradigm, we robustly acquired depth-specific BOLD responses in hippocampal subfields. In the CA1 and subiculum subregions, our results indicate a more pronounced trisynaptic path input rather than dominant direct inputs from the entorhinal cortex during autobiographical memory retrieval. Our study provides unique insights into the hippocampus at the mesoscale level, will help interpreting hippocampal laminar fMRI responses and allow researchers to test mechanistic hypotheses of hippocampal function.
人类海马体已通过功能磁共振成像(fMRI)在宏观尺度上进行了广泛研究,但在中尺度(即层水平)的潜在微电路在人类中基本上未被研究。我们针对海马体层状fMRI的两个基本问题:静脉偏差如何影响海马体层状反应的解释,以及是否有可能建立一个基准层状fMRI实验,利用最广泛应用的GRE-BOLD对比来稳健地引发单受试者海马体激活。我们全面表征了GRE-BOLD反应以及T*、tSNR和生理噪声,作为人类海马体各个子区域中皮质深度的函数。我们的结果表明,不同子区域的血管结构不同,导致GRE-BOLD反应存在子区域特异性的层状偏差。使用自传体记忆范式,我们在海马体子区域稳健地获取了深度特异性的BOLD反应。在CA1和下托子区域,我们的结果表明,在自传体记忆检索过程中,三突触路径输入比来自内嗅皮质的主要直接输入更为明显。我们的研究在中尺度水平上为海马体提供了独特的见解,将有助于解释海马体层状fMRI反应,并使研究人员能够测试海马体功能的机制假设。