Suppr超能文献

通过激光粉末床熔融制备的沉淀硬化型(NiCoCr)C中熵合金的低温拉伸强度为1.6 GPa。

Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)C Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion.

作者信息

Park So-Yeon, Kim Young-Kyun, Kim Hyoung Seop, Lee Kee-Ahn

机构信息

Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.

Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea.

出版信息

Materials (Basel). 2025 Aug 4;18(15):3656. doi: 10.3390/ma18153656.

Abstract

A (NiCoCr)C medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (CrC) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation-precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs.

摘要

采用含0.75原子%碳的预合金粉末原料,通过激光粉末床熔融(LPBF)制备了一种(NiCoCr)C中熵合金(MEA),随后进行了析出热处理。增材制造态合金具有高密度(>99.9%)、柱状晶粒、精细亚结构和强烈的<111>织构。在700℃下热处理1小时促进了富铬碳化物(CrC)沿晶粒和亚结构边界的析出,通过齐纳钉扎和消耗基体中的碳使微观结构稳定。热处理后的合金在77K时具有优异的低温拉伸性能,屈服强度为1230MPa,极限抗拉强度为1.6GPa。与先前报道的增材制造的NiCoCr基中熵合金相比,该合金在室温和低温下均表现出优异的强度,表明其在极端环境下的结构应用潜力。低温下的变形机制显示出大量的变形孪晶、堆垛层错以及强烈的位错-析出物相互作用。这些特征导致位错锁定,从而产生高于室温下观察到的加工硬化率。本研究表明,添加碳和热处理可以有效地调整堆垛层错能并稳定亚结构,从而提高增材制造的NiCoCr中熵合金的低温力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18d/12348286/ff0ba54d8271/materials-18-03656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验