Galstian I Ye, Shevchenko M Ya, Tsapko Ye A, Shatnii T D, Lisova O M, Len E G
Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany.
G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine.
Sci Rep. 2025 Aug 14;15(1):29886. doi: 10.1038/s41598-025-12418-4.
This work explores the potential of conductive polymer-carbon nanocomposites, specifically polytetrafluoroethylene with multi-walled carbon nanotubes (PTFE-CNTs), as efficient electron emitters for emission electronics, low-temperature thermionic energy conversion (TEC), sensors, elements of information storage devices, and materials with targeted control of electromagnetic waves' absorption/reflection. Our main scientific contribution is the demonstration of electron emission from investigated composite PTFE + 10 wt% CNTs at significantly reduced operating temperatures (near 200 °C), much lower than those for pure CNTs and conventional materials for emission electronics and energy. The research combines experimental studies of electron emission under concentrated solar and pulsed laser radiation, structural characterization of samples by electron microscopy, and positron spectroscopy. The last method and contact potential difference method are used to investigate the electronic properties, including charge transfer between composite components, and the work function of the material. Results indicate that electrons can be emitted from both the surface and subsurface (through the polymer layer) of CNTs. The emission current can be enhanced by the Schottky effect due to the electrical fields of adsorbed cations. Additionally, a novel method for tuning the composite's work function due to irradiation by low-energy electrons is proposed. It opens pathways for targeted control not only of emission performance but other electronic properties of polymer-carbon nanocomposites, including absorption and reflection of electromagnetic waves in a wide frequency range.
本工作探索了导电聚合物 - 碳纳米复合材料,特别是聚四氟乙烯与多壁碳纳米管(PTFE - CNTs)作为发射电子学、低温热离子能量转换(TEC)、传感器、信息存储设备元件以及具有目标控制电磁波吸收/反射功能的材料的高效电子发射体的潜力。我们的主要科学贡献在于证明了在显著降低的工作温度(接近200°C)下,所研究的复合PTFE + 10 wt% CNTs能够发射电子,该温度远低于纯碳纳米管以及用于发射电子学和能源的传统材料的工作温度。该研究结合了在聚光太阳能和脉冲激光辐射下的电子发射实验研究、通过电子显微镜对样品进行结构表征以及正电子光谱分析。最后一种方法和接触电势差法用于研究电子性质,包括复合组分之间的电荷转移以及材料的功函数。结果表明,电子可以从碳纳米管的表面和次表面(通过聚合物层)发射。由于吸附阳离子的电场,肖特基效应可以增强发射电流。此外,还提出了一种通过低能电子辐照来调节复合材料功函数的新方法。它不仅为有针对性地控制聚合物 - 碳纳米复合材料的发射性能,而且为控制其包括在宽频率范围内电磁波吸收和反射在内的其他电子性质开辟了途径。