Tou Hoi In, Rosenes Zachary, Khandokar Yogesh, Zlatic Courtney O, Metcalfe Riley D, Mok Yee-Foong, Morton Craig J, Gooley Paul R, Griffin Michael D W
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
J Mol Biol. 2025 Aug 13;437(21):169394. doi: 10.1016/j.jmb.2025.169394.
Apolipoprotein A-I (apoA-I) plays important roles in clearing cholesterol and phospholipids from peripheral tissues, forming high-density lipoprotein (HDL). However, despite this important function, apoA-I has a propensity to form amyloid fibrils implicated in atherosclerosis and hereditary amyloidosis. Historically, structural determination of lipid-free or lipid-poor apoA-I has been difficult. Here, we obtained the crystal structure of the apoA-I monomer in complex with the antigen-binding fragment (Fab) of a monoclonal antibody. The structure reveals that the N-terminal domain (NTD, residues 1-184) of apoA-I is a compact four-helical bundle, whereas the C-terminal domain (CTD, residues 185-243) is unresolved in the structure. Molecular Dynamics (MD) simulations and small-angle X-ray scattering (SAXS) analysis revealed that the apoA-I NTD dimerises by domain-swapping and the dimer is elongated. Methionine (Met) oxidation in apoA-I destabilises both full-length apoA-I (apoA-I) and C-terminally truncated apoA-I (apoA-I), causing dissociation of the domain-swapped dimer and fibril formation. Met oxidation also increased the lipid-binding ability of apoA-I, while the amyloidogenic mutation, G26R, did not. Hydrogen-deuterium exchange coupled with nuclear magnetic resonance (HDX-NMR), SAXS, and MD analyses showed that triply Met-oxidised (3MetO) and G26R apoA-I are both highly dynamic but remain partially folded. Based on these results, we propose that domain-swapping dimerisation also exists in apoA-I, with the CTD mediating further oligomerisation. We also propose that lipid-binding is promoted by increased global destabilisation in the protein structure, and/or driven by a specific local conformation that is induced by Met-oxidation but not the G26R mutation.
载脂蛋白A-I(apoA-I)在清除外周组织中的胆固醇和磷脂以形成高密度脂蛋白(HDL)方面发挥着重要作用。然而,尽管具有这一重要功能,apoA-I却有形成淀粉样纤维的倾向,而这些纤维与动脉粥样硬化和遗传性淀粉样变性有关。从历史上看,无脂质或低脂质apoA-I的结构测定一直很困难。在此,我们获得了与单克隆抗体的抗原结合片段(Fab)复合的apoA-I单体的晶体结构。该结构显示,apoA-I的N端结构域(NTD,第1至184位氨基酸残基)是一个紧密的四螺旋束,而C端结构域(CTD,第185至243位氨基酸残基)在该结构中未解析。分子动力学(MD)模拟和小角X射线散射(SAXS)分析表明,apoA-I的NTD通过结构域交换形成二聚体,且该二聚体呈拉长状。apoA-I中的甲硫氨酸(Met)氧化会使全长apoA-I(apoA-I)和C端截短的apoA-I(apoA-I)都不稳定,导致结构域交换二聚体解离并形成纤维。Met氧化还增加了apoA-I的脂质结合能力,而淀粉样变性突变G26R则没有。氢-氘交换结合核磁共振(HDX-NMR)、SAXS和MD分析表明,三重Met氧化(3MetO)的apoA-I和G26R apoA-I都具有高度动态性,但仍保持部分折叠状态。基于这些结果,我们提出apoA-I中也存在结构域交换二聚化,由CTD介导进一步的寡聚化。我们还提出,脂质结合是由蛋白质结构中整体稳定性增加所促进的,和/或由Met氧化诱导而非G26R突变诱导的特定局部构象所驱动。