Sasmal Abhishek, Maiti Payel, Chelvane J Arout, Arockiarajan A
Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai, 600036, Tamil Nadu, India.
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, 721302, West Bengal, India.
Sci Rep. 2025 Aug 17;15(1):30147. doi: 10.1038/s41598-025-13253-3.
Hybrid CoFeO@0.5(BaCa)TiO-0.5Ba(TiZr)O (CF@BCZT) heterostructured nanomaterials have been incorporated into poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) to achieve enhanced magnetoelectric (ME) performance in flexible polymeric composites. The magnetostriction of CF, in this case, stimulates both the P(VDF-TrFE) and highly piezoelectric BCZT dipoles at inorganic-organic and inorganic-inorganic interfaces, respectively, thereby achieving ME coupling coefficient as high as 96 mV·cm·Oe. The optimized device shows excellent DC and AC magnetic field sensitivity and associated magnetic field energy harvesting ability. On the other hand, due to high polarity of the developed composites and high tribo-negativity of PVDF, the developed films show excellent performance as piezoelectric and piezo-tribo hybrid nanogenerators (PENGs and HNGs, respectively) too. The optimized PENG delivers ~ 75 µW/cm of power density with ~ 46% of efficiency and is able for efficient static and dynamic pressure sensing, bending strain sensing, and associated piezoelectric energy harvesting. On the other hand, the optimized HNG, with ~ 255 µW/cm of output power density, shows its excellent performance for various regular and irregular biomechanical and ambient mechanical energy harvesting, associated self-powered sensing, and powering up small electronics. Thus, the developed composites can be regarded as an excellent multifunctional material for highly efficient multi-mode (magnetoelectric, piezoelectric, and piezo-tribo hybrid) energy harvesting and sensing.
混合CoFeO@0.5(BaCa)TiO-0.5Ba(TiZr)O(CF@BCZT)异质结构纳米材料已被掺入聚(偏二氟乙烯-三氟乙烯)(P(VDF-TrFE))中,以在柔性聚合物复合材料中实现增强的磁电(ME)性能。在这种情况下,CF的磁致伸缩分别在无机-有机和无机-无机界面处激发P(VDF-TrFE)和高压电BCZT偶极,从而实现高达96 mV·cm·Oe的ME耦合系数。优化后的器件表现出优异的直流和交流磁场灵敏度以及相关的磁场能量收集能力。另一方面,由于所制备复合材料的高极性和PVDF的高摩擦负电性,所制备的薄膜也分别作为压电和压电热混合纳米发电机(分别为PENGs和HNGs)表现出优异的性能。优化后的PENG可提供约75 µW/cm的功率密度,效率约为46%,能够进行高效的静态和动态压力传感、弯曲应变传感以及相关的压电能量收集。另一方面,优化后的HNG具有约255 µW/cm的输出功率密度,在各种规则和不规则生物力学及环境机械能收集、相关的自供电传感以及为小型电子设备供电方面表现出优异性能。因此,所制备的复合材料可被视为一种用于高效多模式(磁电、压电和压电热混合)能量收集和传感的优异多功能材料。