Suppr超能文献

基于人工智能的血流储备分数技术在冠心病临床管理中检测冠状动脉CTA狭窄的疗效:一项系统评价

Efficacy of artificial intelligence-based FFR technology for coronary CTA stenosis detection in clinical management of coronary artery disease: a systematic review.

作者信息

Liu Tong, Liu Ming, Aisika Ailiyaerjiang, Wumaier Palidanmu, Abulizi Abudukeyoumujiang, Wang Jingru, Nijiati Mayidili

机构信息

Department of Radiology, Medical Imaging Center, Xinjiang Medical University Affiliated Fourth Hospital, Urumqi, China.

Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, China.

出版信息

Front Physiol. 2025 Jul 31;16:1635923. doi: 10.3389/fphys.2025.1635923. eCollection 2025.

Abstract

Coronary computed tomography angiography (CCTA) integrated with artificial intelligence (AI) technology, particularly AI-based fractional flow reserve (FFR) assessment, has emerged as a crucial tool in the diagnosis and treatment of coronary artery disease (CAD). Recent advances in AI technology have demonstrated promising applications of AI-based FFR in detecting coronary stenosis through CCTA. Current evidence suggests that AI-FFR offers significant advantages in diagnostic accuracy and clinical utility, potentially enhancing the efficiency of CAD management. However, challenges persist in algorithm robustness, data heterogeneity, and clinical implementation. This review synthesizes recent developments in AI-based FFR technology for coronary stenosis detection via CCTA, focusing on AI-assisted quantitative coronary CTA (AI-QCT), deep learning algorithms, and their applications in three-dimensional coronary reconstruction and hemodynamic simulation. We analyze comparative diagnostic performance between AI-FFR and conventional methods, providing insights for future research directions and clinical applications.

摘要

冠状动脉计算机断层扫描血管造影(CCTA)与人工智能(AI)技术相结合,特别是基于AI的血流储备分数(FFR)评估,已成为冠状动脉疾病(CAD)诊断和治疗的关键工具。AI技术的最新进展表明,基于AI的FFR在通过CCTA检测冠状动脉狭窄方面具有广阔的应用前景。目前的证据表明,AI-FFR在诊断准确性和临床实用性方面具有显著优势,可能会提高CAD管理的效率。然而,在算法稳健性、数据异质性和临床应用方面仍然存在挑战。本综述综合了基于AI的FFR技术在通过CCTA检测冠状动脉狭窄方面的最新进展,重点关注AI辅助定量冠状动脉CTA(AI-QCT)、深度学习算法及其在三维冠状动脉重建和血流动力学模拟中的应用。我们分析了AI-FFR与传统方法之间的比较诊断性能,为未来的研究方向和临床应用提供见解。

相似文献

9
Artificial Intelligence based fractional flow reserve.
Cardiol J. 2025 Aug 14. doi: 10.5603/cj.102635.

本文引用的文献

3
Artificial Intelligence in Cardiovascular Imaging and Interventional Cardiology: Emerging Trends and Clinical Implications.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102558. doi: 10.1016/j.jscai.2024.102558. eCollection 2025 Mar.
5
Artificial Intelligence in Cardiology: General Perspectives and Focus on Interventional Cardiology.
Anatol J Cardiol. 2025 Apr;29(4):152-163. doi: 10.14744/AnatolJCardiol.2025.5237.
6
Artificial Intelligence-Empowered Radiology-Current Status and Critical Review.
Diagnostics (Basel). 2025 Jan 24;15(3):282. doi: 10.3390/diagnostics15030282.
7
Current Trends and Perspectives of Pressure Wire-Based Coronary Artery Bypass Grafting.
J Cardiovasc Dev Dis. 2025 Jan 2;12(1):16. doi: 10.3390/jcdd12010016.
9
A comparative review of coronary computed tomography angiography and myocardial perfusion imaging.
Bratisl Lek Listy. 2024;125(12):813-822. doi: 10.4149/BLL_2024_125.
10
Advancements in Cardiac CT Imaging: The Era of Artificial Intelligence.
Echocardiography. 2024 Dec;41(12):e70042. doi: 10.1111/echo.70042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验