Liu Tong, Liu Ming, Aisika Ailiyaerjiang, Wumaier Palidanmu, Abulizi Abudukeyoumujiang, Wang Jingru, Nijiati Mayidili
Department of Radiology, Medical Imaging Center, Xinjiang Medical University Affiliated Fourth Hospital, Urumqi, China.
Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, China.
Front Physiol. 2025 Jul 31;16:1635923. doi: 10.3389/fphys.2025.1635923. eCollection 2025.
Coronary computed tomography angiography (CCTA) integrated with artificial intelligence (AI) technology, particularly AI-based fractional flow reserve (FFR) assessment, has emerged as a crucial tool in the diagnosis and treatment of coronary artery disease (CAD). Recent advances in AI technology have demonstrated promising applications of AI-based FFR in detecting coronary stenosis through CCTA. Current evidence suggests that AI-FFR offers significant advantages in diagnostic accuracy and clinical utility, potentially enhancing the efficiency of CAD management. However, challenges persist in algorithm robustness, data heterogeneity, and clinical implementation. This review synthesizes recent developments in AI-based FFR technology for coronary stenosis detection via CCTA, focusing on AI-assisted quantitative coronary CTA (AI-QCT), deep learning algorithms, and their applications in three-dimensional coronary reconstruction and hemodynamic simulation. We analyze comparative diagnostic performance between AI-FFR and conventional methods, providing insights for future research directions and clinical applications.
冠状动脉计算机断层扫描血管造影(CCTA)与人工智能(AI)技术相结合,特别是基于AI的血流储备分数(FFR)评估,已成为冠状动脉疾病(CAD)诊断和治疗的关键工具。AI技术的最新进展表明,基于AI的FFR在通过CCTA检测冠状动脉狭窄方面具有广阔的应用前景。目前的证据表明,AI-FFR在诊断准确性和临床实用性方面具有显著优势,可能会提高CAD管理的效率。然而,在算法稳健性、数据异质性和临床应用方面仍然存在挑战。本综述综合了基于AI的FFR技术在通过CCTA检测冠状动脉狭窄方面的最新进展,重点关注AI辅助定量冠状动脉CTA(AI-QCT)、深度学习算法及其在三维冠状动脉重建和血流动力学模拟中的应用。我们分析了AI-FFR与传统方法之间的比较诊断性能,为未来的研究方向和临床应用提供见解。