Suppr超能文献

生物工程化杂交双靶向纳米颗粒重编程肿瘤微环境用于深部胶质母细胞瘤光动力治疗。

Bioengineered hybrid dual-targeting nanoparticles reprogram the tumour microenvironment for deep glioblastoma photodynamic therapy.

作者信息

Zhao Rongrong, Hou Ying, Li Boyan, Pan Ziwen, Qiu Jiawei, Wang Qingtong, Qi Yanhua, Han Zhe, Zhao Hongyu, Liu Hong, Zhou Weijia, Li Gang, Xue Hao

机构信息

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.

Shandong Key Laboratory of Brain Health and Function Remodelling, Jinan, 250012, China.

出版信息

Nat Commun. 2025 Aug 18;16(1):7672. doi: 10.1038/s41467-025-63081-2.

Abstract

Glioblastoma (GBM) poses significant therapeutic challenges due to its hypoxic and immunosuppressive tumour microenvironment (TME), low immunogenicity and physical barriers. While combining photodynamic therapy (PDT) with immunotherapy holds promise, its efficacy is hampered by insufficient immune activation. In this study, we develop a multifunctional photodynamic-enhanced biomimetic intelligent nanoplatform (FBFO@HM@aOPN) responsive to the TME. The nanoplatform consists of a dual-enzyme nanozyme encapsulated in a prokaryotic-eukaryotic hybrid membrane, further modified with a pH-sensitive tumor-targeting antibody. After systemic administration, FBFO@HM@aOPN selectively accumulates in the GBM through vascular regulation and extracellular matrix (ECM) remodelling while generating oxygen to alleviate hypoxia. Crucially, the platform concurrently induces immunogenic death in tumour cells and reprograms protumoral macrophages to antitumor phenotypes. This dual action robustly activates both innate and adaptive immunity, significantly inhibiting GBM growth. Furthermore, when combined with anti-PD1 immunotherapy, the nanoplatform dramatically boosts the treatment effect and effectively prevents postsurgical tumour recurrence. Therefore, our work offers a multimodal platform for stimulating anti-tumour immunity, with potential applicability for GBM patients.

摘要

胶质母细胞瘤(GBM)因其缺氧和免疫抑制的肿瘤微环境(TME)、低免疫原性及物理屏障而带来重大治疗挑战。虽然将光动力疗法(PDT)与免疫疗法相结合具有前景,但其疗效因免疫激活不足而受到阻碍。在本研究中,我们开发了一种对TME有响应的多功能光动力增强仿生智能纳米平台(FBFO@HM@aOPN)。该纳米平台由封装在原核 - 真核杂交膜中的双酶纳米酶组成,并进一步用pH敏感的肿瘤靶向抗体修饰。全身给药后,FBFO@HM@aOPN通过血管调节和细胞外基质(ECM)重塑选择性地在GBM中积累,同时产生氧气以缓解缺氧。至关重要的是,该平台同时诱导肿瘤细胞发生免疫原性死亡,并将促肿瘤巨噬细胞重编程为抗肿瘤表型。这种双重作用有力地激活先天免疫和适应性免疫,显著抑制GBM生长。此外,当与抗PD1免疫疗法联合使用时,该纳米平台显著提高治疗效果并有效防止术后肿瘤复发。因此,我们的工作提供了一个用于刺激抗肿瘤免疫的多模态平台,对GBM患者具有潜在适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验