Suppr超能文献

多催化场辅助转化钢铁副产气体中低浓度一氧化碳以实现钢铁-化工协同生产

Multi-Catalytic-Field Assisted Conversion of Low-Concentration CO in Steel Byproduct Gas for Synergistic Steel-Chemical Production.

作者信息

Li Qiannan, Wei Guangsheng, Qi Jian, Zhao Kun, Han Baochen

机构信息

Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.

Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Acc Chem Res. 2025 Aug 19. doi: 10.1021/acs.accounts.5c00348.

Abstract

ConspectusThe iron and steel industry, as a major global CO emitter, urgently requires technological breakthroughs in its carbon neutrality pathway. Existing emission reduction technologies such as carbon capture, utilization and storage are economically insufficient, while the full utilization of byproduct gas may lead to energy shortages in steel enterprises. Steel byproduct gases (e.g., converter gas) have complex composition, and traditional combustion results in high emissions. In this context, the proposed low concentration CO (LCC) system demonstrates dual advantages: (1) enhancing the calorific value of the byproduct gas to meet the demands of high-energy steelmaking processes and (2) achieving the recovery of high-purity CO postcombustion, thereby facilitating the carbon neutrality pathway with minimized separation energy consumption. However, components such as CO and N in the gas lead to competitive adsorption, low catalytic selectivity, and complex reaction pathways, necessitating breakthroughs in catalytic mechanisms and process innovation.This Account based on the research accumulation of the authors' team in the field of CO catalytic reduction and iron and steel metallurgy systematically reviews the key scientific issues and technological advancements in the catalytic conversion of LCC, using converter gas as a typical case. First, addressing the challenge of selective CO adsorption, the competitive mechanisms of different adsorption models in complex gas environments were explored. Second, in terms of activation and reaction pathway regulation, the influence patterns of gases such as CO and N on the CO reduction reaction are analyzed. Furthermore, through in-depth analysis, new principles and processes for CO adsorption in novel scenarios, catalyst matching, and directional design, material surface reconstruction under industrial environmental conditions is considered. Finally, we integrate the LCC reduction technology into the synergistic steel-chemical production technology route, focusing on elucidating the scientific design principles of meso-macro bridging in the engineering application process, providing a reference for the treatment of various industrial flue gases and tail gases.The LCC catalytic reduction technology aids steel industry carbon emission reduction through "source conversion-end utilization", but its industrialization requires collaborative innovation in theory and engineering. Future efforts should focus on the catalytic surface and interface mechanisms under complex gaseous conditions, develop highly efficient and stable catalysts, and design an integrated intelligent system of "catalysis-calorific value-chemical" to promote the near-zero carbon transformation in the steel industry. This technology not only supports carbon neutrality in the steel industry but also provides interdisciplinary solutions for CO resource utilization in the chemical and energy sectors.

摘要

综述

钢铁行业作为全球主要的碳排放源,迫切需要在其碳中和路径上取得技术突破。现有的减排技术,如碳捕获、利用和封存,在经济上并不充分,而副产气体的充分利用可能导致钢铁企业能源短缺。钢铁副产气体(如转炉煤气)成分复杂,传统燃烧会导致高排放。在此背景下,所提出的低浓度一氧化碳(LCC)系统具有双重优势:(1)提高副产气体的热值以满足高能炼钢工艺的需求;(2)实现燃烧后高纯度一氧化碳的回收,从而以最小化的分离能耗促进碳中和路径。然而,气体中的一氧化碳和氮气等成分会导致竞争性吸附、低催化选择性和复杂的反应路径,因此需要在催化机理和工艺创新方面取得突破。

本综述基于作者团队在一氧化碳催化还原和钢铁冶金领域的研究积累,以转炉煤气为典型案例,系统回顾了LCC催化转化中的关键科学问题和技术进展。首先,针对选择性一氧化碳吸附的挑战,探索了复杂气体环境中不同吸附模型的竞争机制。其次,在活化和反应路径调控方面,分析了一氧化碳和氮气等气体对一氧化碳还原反应的影响模式。此外,通过深入分析,考虑了新场景下一氧化碳吸附的新原理和工艺、催化剂匹配以及定向设计、工业环境条件下的材料表面重构。最后,我们将LCC还原技术整合到钢铁 - 化工协同生产技术路线中,重点阐明工程应用过程中微观 - 宏观桥接的科学设计原则,为各种工业废气和尾气的处理提供参考。

LCC催化还原技术通过“源头转化 - 末端利用”助力钢铁行业碳减排,但其工业化需要理论和工程方面的协同创新。未来的工作应聚焦于复杂气态条件下的催化表面和界面机理,开发高效稳定的催化剂,并设计“催化 - 热值 - 化工”一体化智能系统,以推动钢铁行业的近零碳转型。该技术不仅支持钢铁行业的碳中和,还为化工和能源领域的一氧化碳资源利用提供跨学科解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验