Suppr超能文献

基于人工智能的眼科交互式平台的临床性能:三级参考中心的经验

Clinical performance of an interactive platform based on artificial intelligence in ophthalmology: experience in a third-level reference center.

作者信息

Armadá-Maresca Felix, Capote-Díaz María, Cidad-Betegón María Del Pino, Cordero-Ros Rosa María, Martínez-Godoy Lilian, Vázquez-Colomo Paola, Laín-Olia Beatriz, Songel-Sanchís Bruno, Caminos-Melguizo Alfonso, Baoud-Ould-Haddi Inas

机构信息

Ophthalmology Department, Hospital Universitario La Paz, Madrid, Spain.

Zink Medical, Health Market Consulting, Ltd., Valencia, Spain.

出版信息

Front Med (Lausanne). 2025 Aug 5;12:1593556. doi: 10.3389/fmed.2025.1593556. eCollection 2025.

Abstract

OBJECTIVE

To assess the diagnostic performance of an interactive platform for ophthalmology in a real-world clinical setting at a tertiary care center.

METHODS

A prospective, observational, cross-sectional study was conducted on consecutive patients referred by general practitioners to the Ophthalmology Department of a third-level University Hospital. Participants underwent automated ocular evaluation using DORIA () including the Eyelib™ Robotized scan (MIKAJAKI, Geneva, Switzerland).

RESULTS

Of 2,774 referred patients, 2,478 (89.3%) attended their appointments and were examined. Among them, the mean age was 58.5 ± 14.5 years and 1,535 (61.9%) were women. Visual acuity loss with 591 (24.2%) patients and fundus examination 421 (17.3%) patients were the most common referral reasons. Based on DORIA results, ophthalmologists concluded that 807 patients (32.6%) required no further ophthalmological care, 858 (34.6%) needed follow-up with a general ophthalmologist, and 341 (13.8%) were referred to primary care. In a detailed assessment of 2,478 cases, 1,148 (46.3%) were discharged or referred to primary care, while 472 (35.5%) individuals required specialized ophthalmology care.

CONCLUSION

The platform might be considered as a valuable solution to the waiting list issue, reducing specialist interventions, and optimizing healthcare resources. Real-world findings suggest potential cost savings and improved patient management. Further studies are necessary to validate its comparative effectiveness.

摘要

目的

评估一个眼科互动平台在三级医疗中心真实临床环境中的诊断性能。

方法

对全科医生转诊至一所三级大学医院眼科的连续患者进行了一项前瞻性、观察性横断面研究。参与者使用DORIA()进行了自动眼部评估,包括Eyelib™机器人扫描(瑞士日内瓦的MIKAJAKI)。

结果

在2774名转诊患者中,2478名(89.3%)前来就诊并接受了检查。其中,平均年龄为58.5±14.5岁,女性有1535名(61.9%)。视力丧失(591名患者,24.2%)和眼底检查(421名患者,17.3%)是最常见的转诊原因。根据DORIA结果,眼科医生得出结论,807名患者(32.6%)无需进一步的眼科护理,858名(34.6%)需要由普通眼科医生进行随访,341名(13.8%)被转诊至初级保健机构。在对2478例病例的详细评估中,1148例(46.3%)出院或被转诊至初级保健机构,而472例(35.5%)个体需要专科眼科护理。

结论

该平台可被视为解决候诊名单问题、减少专科干预和优化医疗资源的有价值解决方案。真实世界的研究结果表明可能节省成本并改善患者管理。需要进一步研究以验证其相对有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a95b/12364005/c0866d9417fe/fmed-12-1593556-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验