Suppr超能文献

裸子植物特有的CYP90Js能够实现双黄酮生物合成以及穗花杉双黄酮的微生物生产。

Gymnosperm-specific CYP90Js enable biflavonoid biosynthesis and microbial production of amentoflavone.

作者信息

Dai Xue-Hui, Zhu Jiang-Ming, Wang Guang-Yi, Ren Yu-Hong, Liu Hai-Li, Wang Yong

机构信息

Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.

出版信息

Nat Commun. 2025 Aug 21;16(1):7792. doi: 10.1038/s41467-025-62990-6.

Abstract

Biflavonoids, a unique subclass of flavonoids with superior clinical activity compared to their monomeric counterparts, offer distinct therapeutic benefits by targeting multiple pathways in neurodegenerative disorders. However, the mechanism of flavonoid dimerization in plants remains enigmatic. Here, we identify CYP90J orthologs as the missing link in biflavonoid biosynthesis. We demonstrate that gymnosperm-specific CYP90Js catalyze intermolecular C-C bond formation in the biosynthesis of biaryl natural products. Together with the identified O-methyltransferases, CYP90Js are responsible for the production of ginkgo biflavonoids. Phylogenetic analysis reveals that the CYP90J subfamily evolved from CYP90E of lycophytes and is found exclusively in gymnosperms. Molecular dynamics simulations show that regioselective dimerization of apigenin to amentoflavone is driven by spatial constraints and π-π stacking interactions. QM/MM calculations support a heme-induced diradical coupling mechanism. Notably, the de novo reconstruction of amentoflavone was achieved in an engineered L-tyrosine E. coli strain, with a titer of 4.75 mg/L. Overall, the discovery of CYP90Js represents a crucial step toward understanding flavone dimerization, and the engineering of biflavonoids in microorganism provides a promising biotechnology platform for expanding therapeutic applications of biflavonoids.

摘要

双黄酮是黄酮类化合物中的一个独特亚类,与单体黄酮相比具有卓越的临床活性,通过靶向神经退行性疾病中的多种途径提供独特的治疗益处。然而,植物中黄酮类二聚化的机制仍然是个谜。在这里,我们鉴定出CYP90J直系同源物是双黄酮生物合成中缺失的环节。我们证明裸子植物特有的CYP90J在联芳基天然产物的生物合成中催化分子间C-C键的形成。与已鉴定的O-甲基转移酶一起,CYP90J负责银杏双黄酮的产生。系统发育分析表明,CYP90J亚家族从石松类植物的CYP90E进化而来,并且仅存在于裸子植物中。分子动力学模拟表明,芹菜素向穗花杉双黄酮的区域选择性二聚化是由空间限制和π-π堆积相互作用驱动的。QM/MM计算支持血红素诱导的双自由基偶联机制。值得注意的是,在工程化的L-酪氨酸大肠杆菌菌株中实现了穗花杉双黄酮的从头重建,产量为4.75 mg/L。总体而言,CYP90J的发现是理解黄酮二聚化的关键一步,微生物中双黄酮的工程改造为扩大双黄酮的治疗应用提供了一个有前景的生物技术平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验