Xu Di, Yang Yang, Liu Hengjie, Lyu Qihui, Descovich Martina, Ruan Dan, Sheng Ke
Radiation Oncology, University of California, San Francisco, California, United States of America.
Radiology, University of California, San Francisco, California, United States of America.
PLoS One. 2025 Aug 22;20(8):e0330463. doi: 10.1371/journal.pone.0330463. eCollection 2025.
Computed tomography (CT) provides high spatial-resolution visualization of 3D structures for various applications. Traditional analytical/iterative CT reconstruction algorithms require hundreds of angular samplings, a condition may not be met practically for physical and mechanical limitations. Sparse view CT reconstruction has been proposed using constrained optimization and machine learning methods with varying success, less so for ultra-sparse view reconstruction. Neural radiance field (NeRF) is a powerful tool for reconstructing and rendering 3D natural scenes from sparse views, but its direct application to 3D medical image reconstruction has been minimally successful due to the differences in photon transportation and available prior information between optic and X-ray.
We develop TomoGRAF to reconstruct high-quality 3D CT volumes using ultra-sparse projections. TomoGRAF has two main novelties pertinent to X-ray physics and CT imaging. First, TomoGRAF's volume rendering module accumulates x-ray material attenuation passing through an object with CT geometry rather than visible light material color and opacity from surface interaction in NeRF. Second, TomoGRAF penalizes the difference between the simulated and ground truth volume during training besides the 2D views, thus significantly improving the prior fidelity.
TomoGRAF is trained on LIDC-IDRI dataset (1011 scans) and evaluated on an unseen in-house dataset (100 scans) of distinct imaging characteristics from training and demonstrates a vast leap in performance compared with state-of-the-art deep learning and NeRF methods.
TomoGRAF provides the first generalizable solution for image-guided radiotherapy and interventional radiology applications, where only one/a few X-ray views are available, but 3D volumetric information is desired.
计算机断层扫描(CT)可为各种应用提供三维结构的高空间分辨率可视化。传统的分析/迭代CT重建算法需要数百次角度采样,由于物理和机械限制,这一条件在实际中可能无法满足。稀疏视图CT重建已通过约束优化和机器学习方法提出,取得了不同程度的成功,对于超稀疏视图重建则效果较差。神经辐射场(NeRF)是一种从稀疏视图重建和渲染三维自然场景的强大工具,但由于光学和X射线在光子传输和可用先验信息方面存在差异,其在三维医学图像重建中的直接应用取得的成功极小。
我们开发了TomoGRAF,以使用超稀疏投影重建高质量的三维CT容积。TomoGRAF有两个与X射线物理和CT成像相关的主要创新点。首先,TomoGRAF的容积渲染模块累积穿过具有CT几何形状的物体的X射线物质衰减,而不是NeRF中基于表面相互作用的可见光物质颜色和不透明度。其次,TomoGRAF在训练期间除了惩罚二维视图外,还惩罚模拟容积与真实容积之间的差异,从而显著提高先验保真度。
TomoGRAF在LIDC-IDRI数据集(1011次扫描)上进行训练,并在与训练具有不同成像特征的内部未见数据集(100次扫描)上进行评估,与最先进的深度学习和NeRF方法相比,性能有了巨大飞跃。
TomoGRAF为图像引导放射治疗和介入放射学应用提供了第一个可推广的解决方案,在这些应用中,只有一个/几个X射线视图可用,但需要三维容积信息。