Jung Insoo, Hopper Corbin, Jang Seong-Hoon, Yeo Hyunsoo, Cho Kwang-Hyun
Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Sci Adv. 2025 Aug 22;11(34):eadw3995. doi: 10.1126/sciadv.adw3995.
Biological systems consist of genetic elements and their regulatory interactions, forming networks that maintain life. However, accumulated alterations such as DNA damage can distort biological behavior, leading to undesirable responses to stimulus. This raises the question of whether we can restore their nominal stimulus-response relationships. Current control approaches tend to enforce a single desired response rather than restore the proper capacity for variable responses to different stimulus. Here, we present an algebraic reverse control (ARC) framework for reversion of altered biological networks. ARC leverages matrix operations to quantify the phenotype landscape of the altered network and identifies reverse control targets for recovering the phenotype landscape of a nominal network. ARC is scalable to large Boolean networks and identifies effective control targets to restore biological behavior.
生物系统由遗传元件及其调控相互作用组成,形成维持生命的网络。然而,诸如DNA损伤等累积变化会扭曲生物行为,导致对刺激产生不良反应。这就提出了一个问题,即我们是否能够恢复其正常的刺激-反应关系。当前的控制方法倾向于强制实现单一的期望反应,而不是恢复对不同刺激产生可变反应的适当能力。在这里,我们提出了一种代数反向控制(ARC)框架,用于改变的生物网络的逆转。ARC利用矩阵运算来量化改变网络的表型景观,并识别用于恢复标称网络表型景观的反向控制目标。ARC可扩展到大型布尔网络,并识别有效的控制目标以恢复生物行为。