Liu Jianbo, Li Ao, Zheng Runhui, Wu Haiying, Wei Yongqiang, Feng Ru
Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Br J Hosp Med (Lond). 2025 Aug 25;86(8):1-19. doi: 10.12968/hmed.2025.0232. Epub 2025 Aug 18.
Primary gastric diffuse large B-cell lymphoma (PG-DLBCL) is a common gastrointestinal malignancy. While rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)-based regimens have improved survival, reliable prognostic tools remain scarce. The International Prognostic Index (IPI), though validated for nodal DLBCL, shows limited accuracy in PG-DLBCL. To address this, we developed an intelligent prognostic model integrating key clinical variables to optimize individualized risk stratification, particularly for resource-limited clinical settings. A retrospective cohort study was conducted at Nanfang Hospital, Southern Medical University, enrolling patients diagnosed with PG-DLBCL between January 2007 and July 2022. Clinical data and survival outcomes were systematically collected. Optimal cut-off values were systematically determined for continuous variables using receiver operating characteristic (ROC) curve analysis. Survival rates were estimated using the Kaplan-Meier method, with survival curves plotted and univariate survival associations assessed using the log-rank test. Multivariable analyses were performed through Cox proportional hazards regression and random forest algorithms. A novel (ferritin, lactate dehydrogenase (LDH), age, monocyte count (mono), β2-microglobulin (β2-MG)) FLAMB prognostic model was constructed by integrating the Cox regression model with random forest classification. Model performance was evaluated by comparing its discriminative accuracy with that of the IPI scoring system. Statistically significant differences in 5-year survival among PG-DLBCL patients were observed for ferritin, age, mono, LDH, β2-MG, B symptoms, and cell of origin (COO) in univariate survival analysis ( < 0.05). We developed the FLAMB model using five routinely available variables (ferritin, LDH, age, mono, and β2-MG) to enhance risk stratification in PG-DLBCL. Compared to the IPI, FLAMB demonstrated superior discriminative power (C-index: 0.653 vs. 0.637, Δ = 1.6%) and more effectively identified high-risk patients requiring treatment intensification. This enhanced risk stratification was confirmed by a statistically significant log-rank test ( < 0.05). Survival analysis in subgroups of non-germinal center B-cell like (GCB) and B symptoms-negative patients yielded consistent results. The newly developed FLAMB prognostic model offers more precise prognostic stratification than the IPI for patients with PG-DLBCL. FLAMB comprises five key variables derived from routine laboratory tests and general clinical characteristics, making it readily accessible. This model enables clinicians, particularly in primary care or community hospitals, to efficiently stratify patient risk, assess underlying disease severity, and inform timely treatment planning.
原发性胃弥漫性大B细胞淋巴瘤(PG-DLBCL)是一种常见的胃肠道恶性肿瘤。虽然基于利妥昔单抗联合环磷酰胺、阿霉素、长春新碱和泼尼松(R-CHOP)的治疗方案提高了生存率,但可靠的预后工具仍然稀缺。国际预后指数(IPI)虽已在淋巴结DLBCL中得到验证,但在PG-DLBCL中的准确性有限。为了解决这一问题,我们开发了一种智能预后模型,整合关键临床变量以优化个体化风险分层,特别是在资源有限的临床环境中。在南方医科大学南方医院进行了一项回顾性队列研究,纳入2007年1月至2022年7月期间诊断为PG-DLBCL的患者。系统收集临床数据和生存结果。使用受试者工作特征(ROC)曲线分析系统确定连续变量的最佳截断值。使用Kaplan-Meier方法估计生存率,绘制生存曲线并使用对数秩检验评估单变量生存关联。通过Cox比例风险回归和随机森林算法进行多变量分析。通过将Cox回归模型与随机森林分类相结合,构建了一种新型的(铁蛋白、乳酸脱氢酶(LDH)、年龄、单核细胞计数(单核细胞)、β2-微球蛋白(β2-MG))FLAMB预后模型。通过将其判别准确性与IPI评分系统进行比较来评估模型性能。在单变量生存分析中,观察到PG-DLBCL患者的铁蛋白、年龄、单核细胞、LDH、β2-MG、B症状和起源细胞(COO)在5年生存率方面存在统计学显著差异(<0.05)。我们使用五个常规可用变量(铁蛋白、LDH、年龄、单核细胞和β2-MG)开发了FLAMB模型,以加强PG-DLBCL中的风险分层。与IPI相比,FLAMB表现出更高的判别力(C指数:0.653对0.637,Δ=1.6%),并更有效地识别需要强化治疗的高危患者。对数秩检验具有统计学显著性(<0.05),证实了这种增强的风险分层。在非生发中心B细胞样(GCB)和B症状阴性患者亚组中的生存分析产生了一致的结果。新开发的FLAMB预后模型为PG-DLBCL患者提供了比IPI更精确的预后分层。FLAMB包含五个从常规实验室检查和一般临床特征得出的关键变量,使其易于获得。该模型使临床医生,特别是在初级保健或社区医院的医生,能够有效地对患者风险进行分层,评估潜在疾病的严重程度,并为及时的治疗计划提供依据。