Suppr超能文献

SpaIM:通过风格迁移实现的单细胞空间转录组插补

SpaIM: single-cell spatial transcriptomics imputation via style transfer.

作者信息

Li Bo, Tang Ziyang, Budhkar Aishwarya, Liu Xiang, Zhang Tonglin, Yang Baijian, Su Jing, Song Qianqian

机构信息

Department of Computer and Information Science, University of Macau, Taipa, Macau, China.

Department of Computer and Information Technology, Purdue University, West Lafayette, IN, USA.

出版信息

Nat Commun. 2025 Aug 23;16(1):7861. doi: 10.1038/s41467-025-63185-9.

Abstract

Spatial transcriptomics (ST) technologies have transformed our understanding of cellular organization but are limited by sparse signals and restricted gene coverage. To address these challenges, we introduce SpaIM, a style transfer learning model that leverages single-cell RNA sequencing (scRNA-seq) data to predict unmeasured gene expressions in ST profiles. By disentangling shared content and modality-specific styles, SpaIM effectively integrates scRNA-seq's rich gene expression with the spatial context of ST. Evaluated across 53 datasets spanning sequencing- and imaging-based spatial technologies in various tissue types, SpaIM consistently outperforms 12 state-of-the-art methods in improving gene coverage and expression accuracy. Furthermore, SpaIM enhances downstream analyses, including ligand-receptor interaction inference, spatial domain characterization, and differential gene expression analysis. Released as open-source software, SpaIM expands accessibility and utility in ST research. Overall, SpaIM represents a robust and generalizable framework for enriching ST data with single-cell information, enabling deeper insights into tissue architecture and cellular function.

摘要

空间转录组学(ST)技术改变了我们对细胞组织的理解,但受到稀疏信号和有限基因覆盖范围的限制。为应对这些挑战,我们引入了SpaIM,这是一种风格迁移学习模型,它利用单细胞RNA测序(scRNA-seq)数据来预测ST图谱中未测量的基因表达。通过解开共享内容和模态特定风格,SpaIM有效地将scRNA-seq丰富的基因表达与ST的空间背景相结合。在跨越各种组织类型的基于测序和成像的空间技术的53个数据集上进行评估,SpaIM在提高基因覆盖范围和表达准确性方面始终优于12种先进方法。此外,SpaIM增强了下游分析,包括配体-受体相互作用推断、空间域表征和差异基因表达分析。作为开源软件发布的SpaIM扩大了ST研究的可及性和实用性。总体而言,SpaIM代表了一个强大且可推广的框架,用于用单细胞信息丰富ST数据,从而能够更深入地了解组织结构和细胞功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验