Suppr超能文献

基于混合进化方法和图像处理的智能物联网用于肿瘤检测。

Smart IoT with the hybrid evolutionary method and image processing for tumor detection.

作者信息

Gao Yan

机构信息

School of Electrical and Mechanical Engineering, Xuchang University, Xuchang, 461000, Henan, China.

出版信息

Sci Rep. 2025 Aug 25;15(1):31156. doi: 10.1038/s41598-025-16042-0.

Abstract

The primary objective of modern healthcare systems is to enhance public health by providing efficient, reliable, and well-structured solutions. Improving patient satisfaction through tailored medical services has driven rapid advancements in healthcare, leading to increased competition and system complexity. However, the expansion of healthcare services introduces challenges such as high data volume, latency, response time constraints, and security vulnerabilities. To address these issues, fog computing offers an effective solution by processing data closer to end devices, reducing latency, and enabling real-time responses. This research proposes a robust brain tumor detection framework within a fog-based smart healthcare infrastructure. The process begins with data placement leveraging an improved evolutionary technique for Image Processing (HETS-IP) to optimize fog node placement based on key parameters such as energy efficiency and latency. Specifically, the Particle Swarm Optimization (PSO) algorithm is enhanced with a direct binary encoding technique, in which solutions are represented as binary strings, making it suitable for problems where decisions are discrete. This approach allows efficient optimization in binary decision spaces and improves adaptability for complex placement problems. Once data placement is committed, the tumor detection framework is performed directly at fog nodes to enhance real-time processing. This phase will begin with preprocessing, where a bilateral filter is applied to reduce noise while preserving critical edge details. Next, feature extraction is utilized to derive statistical texture features, which capture diagnostic information essential for distinguishing between tumor types. The process continues by classification using a deep Convolutional Neural Network (CNN) with sequential architecture to classify tumors. Simulation results demonstrate that HETS-IP outperforms traditional evolutionary algorithms, including Ant Colony Optimization (ACO), Genetic Algorithm-Simulated Annealing (GASA), and Genetic Algorithm (GA). On average, HETS-IP reduces energy consumption by 5%, 9%, and 14% and decreases makespan by 4%, 6%, and 11%, respectively. Additionally, the proposed approach achieves an accuracy of 97% and a precision of 96%, ensuring highly reliable brain tumor detection.

摘要

现代医疗保健系统的主要目标是通过提供高效、可靠且结构良好的解决方案来促进公众健康。通过量身定制的医疗服务提高患者满意度推动了医疗保健领域的快速发展,导致竞争加剧和系统复杂性增加。然而,医疗保健服务的扩展带来了诸如高数据量、延迟、响应时间限制和安全漏洞等挑战。为了解决这些问题,雾计算通过在更靠近终端设备的位置处理数据、减少延迟并实现实时响应,提供了一种有效的解决方案。本研究提出了一种基于雾的智能医疗基础设施中的强大脑肿瘤检测框架。该过程始于数据放置,利用一种改进的图像处理进化技术(HETS-IP),根据能效和延迟等关键参数优化雾节点放置。具体而言,粒子群优化(PSO)算法通过直接二进制编码技术得到增强,其中解决方案表示为二进制字符串,使其适用于决策为离散的问题。这种方法允许在二进制决策空间中进行高效优化,并提高对复杂放置问题的适应性。一旦数据放置完成,肿瘤检测框架直接在雾节点上执行以增强实时处理。此阶段将从预处理开始,其中应用双边滤波器来减少噪声,同时保留关键边缘细节。接下来,利用特征提取来导出统计纹理特征,这些特征捕获区分肿瘤类型所需的诊断信息。该过程通过使用具有顺序架构的深度卷积神经网络(CNN)进行分类来继续,以对肿瘤进行分类。仿真结果表明HETS-IP优于传统进化算法,包括蚁群优化(ACO)、遗传算法 - 模拟退火(GASA)和遗传算法(GA)。平均而言,HETS-IP分别将能耗降低5%、9%和14%,并将完工时间减少4%、6%和11%。此外,所提出的方法实现了97%的准确率和96%的精确率,确保了高度可靠的脑肿瘤检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0646/12375778/17691308cbdd/41598_2025_16042_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验