Suppr超能文献

利用多模态遥感观测和机器学习估算温带混交林地上生物量

Aboveground biomass estimation using multimodal remote sensing observations and machine learning in mixed temperate forest.

作者信息

Lamahewage Shashika Himandi Gardeye, Witharana Chandi, Riemann Rachel, Fahey Robert, Worthley Thomas

机构信息

Department of Natural Resources and the Environment, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, 06269, USA.

Eversource Energy Center, University of Connecticut, Storrs, CT, 06262, USA.

出版信息

Sci Rep. 2025 Aug 24;15(1):31120. doi: 10.1038/s41598-025-15585-6.

Abstract

Plants sequester carbon in their aboveground components, making aboveground tree biomass a key metric for assessing forest carbon storage. Traditional methods of aboveground biomass (AGB) estimation via Forest Inventory and Analysis (FIA) plots lack sufficient sampling intensity to directly produce accurate estimates at fine granularities. Increasing the sampling intensity with additional FIA plots would be labor and time intensive, particularly for large-scale carbon studies. Utilizing remote sensing (RS) data, such as Airborne Light Detection and Ranging (LiDAR), aerial imagery, and satellite images can significantly enhance the efficiency of forest carbon monitoring efforts. The principal objective of this study is to utilize the random forest (RF) algorithm to build predictive AGB models. We utilized 67 explanatory variables, which were extracted from three RS sources resulting in nine RF models. Each RF model was subjected to variable selection, hyperparameter tuning, and model evaluation. The optimum model considered 28 explanatory variables, with root mean square error (RMSE) of 27.19 Mgha and Rof 0.41. Combining LiDAR with image metrics increased the accuracy of prediction models, serving as a pivotal tool for large area biomass mapping and carbon related decision making.

摘要

植物在其地上部分固存碳,因此地上树木生物量是评估森林碳储量的关键指标。通过森林资源清查与分析(FIA)样地估计地上生物量(AGB)的传统方法缺乏足够的采样强度,无法直接在精细尺度上产生准确的估计值。通过增加额外的FIA样地来提高采样强度将耗费大量人力和时间,特别是对于大规模碳研究而言。利用遥感(RS)数据,如机载激光雷达(LiDAR)、航空影像和卫星图像,可以显著提高森林碳监测工作的效率。本研究的主要目的是利用随机森林(RF)算法建立预测AGB模型。我们使用了67个解释变量,这些变量从三种RS数据源中提取,从而得到九个RF模型。每个RF模型都进行了变量选择、超参数调整和模型评估。最优模型考虑了28个解释变量,均方根误差(RMSE)为27.19 Mg/ha,相关系数(R)为0.41。将LiDAR与图像指标相结合提高了预测模型的准确性,是大面积生物量制图和与碳相关决策的关键工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da57/12375767/d9dd6dee3067/41598_2025_15585_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验