Suppr超能文献

在玉米田间研究中用于评估根系结构的表型组到基因组的见解

Phenome-to-genome insights for evaluating root system architecture in field studies of maize.

作者信息

Hein Kirsten M, Liu Alexander E, Mullen Jack L, Shao Mon-Ray, Topp Christopher N, McKay John K

机构信息

Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA.

Donald Danforth Plant Science Center, Saint Louis, Missouri, USA.

出版信息

Plant Genome. 2025 Sep;18(3):e70100. doi: 10.1002/tpg2.70100.

Abstract

Understanding the genetic basis of root system architecture (RSA) in crops requires innovative approaches that enable both high-throughput and precise phenotyping in field conditions. In this study, we evaluated multiple phenotyping and analytical frameworks for quantifying RSA in mature, field-grown maize in three field experiments. We used forward and reverse genetic approaches to evaluate >1700 maize root crowns, including a diversity panel, a biparental mapping population, and maize mutant and wild-type alleles at two known RSA genes, DEEPER ROOTING 1 (DRO1) and Rootless1 (Rt1). We show the utility of increasing the dimensionality of traditional two-dimensional (2D) techniques, referred to as the "2D multi-view" method, to improve the capture of whole root system information for mapping genetic variation influencing RSA. Comparison of univariate and multivariate genome-wide association study (GWAS) approaches revealed that multivariate traits were effective at dissecting complex RSA phenotypes and identifying pleiotropic quantitative trait loci (QTLs). Overall, three-dimensional (3D) root models generated from X-ray computed tomography and digital phenotyping captured a larger proportion of RSA trait variations compared to other methods of root phenotyping, as evidenced by both genome-wide and single-gene analyses. Among the individual root traits, root pulling force emerged as a highly heritable estimate of RSA that identified the largest number of shared QTLs with 3D phenotypes. Our study shows that integrating complementary phenotyping technologies helps to provide a more comprehensive understanding of the genetic architecture of RSA in field-grown maize.

摘要

了解作物根系结构(RSA)的遗传基础需要创新方法,以便在田间条件下实现高通量和精确的表型分析。在本研究中,我们在三个田间试验中评估了多种用于量化成熟田间种植玉米RSA的表型分析和解析框架。我们使用正向和反向遗传学方法评估了1700多个玉米根冠,包括一个多样性群体、一个双亲作图群体,以及两个已知RSA基因DEEPER ROOTING 1(DRO1)和Rootless1(Rt1)的玉米突变体和野生型等位基因。我们展示了增加传统二维(2D)技术维度(即“2D多视图”方法)以改善对影响RSA的遗传变异进行图谱绘制时整个根系信息捕获的效用。单变量和多变量全基因组关联研究(GWAS)方法的比较表明,多变量性状在剖析复杂的RSA表型和识别多效性数量性状基因座(QTL)方面是有效的。总体而言,与其他根系表型分析方法相比,由X射线计算机断层扫描和数字表型分析生成的三维(3D)根系模型捕获了更大比例的RSA性状变异,全基因组分析和单基因分析均证明了这一点。在各个根系性状中,根系拉力成为RSA的一个高度可遗传的估计指标,它识别出与3D表型共享的QTL数量最多。我们的研究表明,整合互补的表型分析技术有助于更全面地了解田间种植玉米RSA的遗传结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8569/12375851/a12a0bb6b6d3/TPG2-18-e70100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验