Suppr超能文献

基于咳嗽声音的人工智能算法在儿科呼吸道疾病诊断中的预测能力:一项系统评价

Predictive Ability of Artificial Intelligence Algorithms in Pediatric Respiratory Disease Diagnosis Using Cough Sounds: A Systematic Review.

作者信息

Ibrahim Abdelhalim Aya Abuelgasim, M Osman Hanady Me, Hafez Sadaka Sally Ibrahim, Yousif Mohammed Mohammed Abdelrahman, Eissa Eman, Abdalla Rasha, Mohamad Hassan Dilal Haroun

机构信息

Emergency Medicine, Najran Armed Forces Hospital, Ministry of Defense Health Services, Najran, SAU.

Quality and Patient Safety, Najran Armed Forces Hospital, Ministry of Defense Health Services, Najran, SAU.

出版信息

Cureus. 2025 Jul 21;17(7):e88457. doi: 10.7759/cureus.88457. eCollection 2025 Jul.

Abstract

Respiratory diseases, including pneumonia, asthma, bronchiolitis, and croup, remain the leading causes of pediatric morbidity and mortality worldwide. Diagnostic challenges persist, especially in low-resource settings lacking specialized tools. Artificial intelligence (AI)-based analysis of cough sounds has emerged as a promising, noninvasive diagnostic alternative. This systematic review synthesizes evidence on the predictive ability of AI algorithms for diagnosing specific pediatric respiratory diseases using cough sounds, evaluating their diagnostic performance, clinical applicability, and methodological quality. Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 guidelines, six studies were included from 270 records identified in PubMed, Scopus, Web of Science, and IEEE Xplore databases. Eligible studies evaluated AI models such as logistic regression, convolutional neural networks (CNNs), support vector machines (SVMs), and hybrid feature-based approaches that combined acoustic and spectral features for disease classification. Techniques like wavelet-based feature extraction and late fusion, where outputs from multiple models are combined at the decision level, were reported to improve diagnostic accuracy. Sensitivity ranged from 82% to 94%, and specificity from 71% to 91% across studies, indicating high diagnostic potential, with some AI models outperforming conventional diagnostic methods such as the World Health Organization (WHO) clinical algorithms. Risk-of-bias assessment using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) revealed concerns in four studies (67%), mainly due to retrospective designs, small sample sizes (ranging from 65 to 585 participants), and lack of external validation. Study limitations included heterogeneous outcome definitions and insufficient reporting of model calibration. Overall, AI-driven cough sound analysis demonstrates significant promise as a rapid, scalable diagnostic tool for pediatric respiratory diseases, particularly in resource-limited settings. Future research should focus on prospective multicenter validation, transparent reporting of methodological details and performance metrics, and integration into clinical workflows to ensure safe and effective real-world implementation.

摘要

包括肺炎、哮喘、细支气管炎和哮吼在内的呼吸道疾病仍然是全球儿童发病和死亡的主要原因。诊断方面的挑战依然存在,尤其是在缺乏专业工具的资源匮乏地区。基于人工智能(AI)的咳嗽声音分析已成为一种有前景的非侵入性诊断方法。本系统评价综合了关于AI算法利用咳嗽声音诊断特定儿童呼吸道疾病的预测能力的证据,评估了它们的诊断性能、临床适用性和方法学质量。按照系统评价和Meta分析的首选报告项目(PRISMA)2020指南,从在PubMed、Scopus、科学网和IEEE Xplore数据库中识别出的270条记录中纳入了六项研究。符合条件的研究评估了诸如逻辑回归、卷积神经网络(CNN)、支持向量机(SVM)以及结合声学和频谱特征进行疾病分类的基于混合特征的方法等AI模型。据报道,基于小波的特征提取和后期融合等技术(在决策层面将多个模型的输出进行组合)可提高诊断准确性。各项研究的灵敏度范围为82%至94%,特异性范围为71%至91%,表明具有较高的诊断潜力,一些AI模型的表现优于世界卫生组织(WHO)临床算法等传统诊断方法。使用诊断准确性研究质量评估-2(QUADAS-2)进行的偏倚风险评估显示,四项研究(67%)存在问题,主要原因是回顾性设计、样本量小(参与者人数从65至585不等)以及缺乏外部验证。研究局限性包括结果定义不统一以及模型校准报告不足。总体而言,AI驱动的咳嗽声音分析作为一种用于儿童呼吸道疾病的快速、可扩展的诊断工具显示出巨大潜力,尤其是在资源有限的环境中。未来的研究应侧重于前瞻性多中心验证、方法学细节和性能指标的透明报告,以及融入临床工作流程以确保在现实世界中安全有效地实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6a/12368924/9b3c6d8b723a/cureus-0017-00000088457-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验