Suppr超能文献

超越流式细胞术:数据驱动的面部表情词典及其在自闭症预测中的应用

Beyond FACS: Data-driven Facial Expression Dictionaries, with Application to Predicting Autism.

作者信息

Sariyanidi Evangelos, Yankowitz Lisa, Schultz Robert T, Herrington John D, Tunc Birkan, Cohn Jeffrey

机构信息

Center for Autism Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Proc Int Conf Autom Face Gesture Recognit. 2025 May;2025. doi: 10.1109/fg61629.2025.11099288. Epub 2025 Aug 6.

Abstract

The Facial Action Coding System (FACS) has been used by numerous studies to investigate the links between facial behavior and mental health. The laborious and costly process of FACS coding has motivated the development of machine learning frameworks for Action Unit (AU) detection. Despite intense efforts spanning three decades, the detection accuracy for many AUs is considered to be below the threshold needed for behavioral research. Also, many AUs are excluded altogether, making it impossible to fulfill the ultimate goal of FACS-the representation of facial expression in its entirety. This paper considers an alternative approach. Instead of creating automated tools that mimic FACS experts, we propose to use a new coding system that mimics the key properties of FACS. Specifically, we construct a data-driven coding system called the Facial Basis, which contains units that correspond to localized and interpretable 3D facial movements, and overcomes three structural limitations of automated FACS coding. First, the proposed method is completely unsupervised, bypassing costly, laborious and variable manual annotation. Second, Facial Basis reconstructs all observable movement, rather than relying on a limited repertoire of recognizable movements (as in automated FACS). Finally, the Facial Basis units are additive, whereas AUs may fail detection when they appear in a non-additive combination. The proposed method outperforms the most frequently used AU detector in predicting autism diagnosis from in-person and remote conversations, highlighting the importance of encoding facial behavior comprehensively. To our knowledge, Facial Basis is the first alternative to FACS for deconstructing facial expressions in videos into localized movements. We provide an open source implementation of the method at github.com/sariyanidi/FacialBasis.

摘要

面部动作编码系统(FACS)已被众多研究用于探究面部行为与心理健康之间的联系。FACS编码过程既费力又昂贵,这推动了用于动作单元(AU)检测的机器学习框架的发展。尽管历经三十年的不懈努力,但许多AU的检测准确率仍被认为低于行为研究所需的阈值。此外,许多AU被完全排除在外,这使得无法实现FACS的最终目标——完整呈现面部表情。本文考虑了一种替代方法。我们不是创建模仿FACS专家的自动化工具,而是提议使用一种模仿FACS关键特性的新编码系统。具体而言,我们构建了一个名为面部基元(Facial Basis)的数据驱动编码系统,它包含与局部化且可解释的3D面部运动相对应的单元,并克服了自动化FACS编码的三个结构限制。首先,所提出的方法是完全无监督的,绕过了昂贵、费力且可变的人工标注。其次,面部基元重建了所有可观察到的运动,而不是依赖于有限的可识别运动库(如在自动化FACS中那样)。最后,面部基元单元是可加性的,而当AU以非加性组合出现时可能无法被检测到。在根据面对面和远程对话预测自闭症诊断方面,所提出的方法优于最常用的AU检测器,突出了全面编码面部行为的重要性。据我们所知,面部基元是FACS的首个替代方法,用于将视频中的面部表情解构为局部运动。我们在github.com/sariyanidi/FacialBasis上提供了该方法的开源实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ac/12369895/ef3de3a85ebb/nihms-2090211-f0001.jpg

相似文献

本文引用的文献

1
Detecting Autism from Head Movements using Kinesics.运用身势学通过头部动作检测自闭症。
Proc ACM Int Conf Multimodal Interact. 2024 Nov;2024:350-354. doi: 10.1145/3678957.3685711. Epub 2024 Nov 4.
2
Predicting Autism from Head Movement Patterns during Naturalistic Social Interactions.基于自然社交互动中头部运动模式预测自闭症
Proc 2023 7th Int Conf Med Health Inform ICMHI 2023 (2023). 2023 May;2023:55-60. doi: 10.1145/3608298.3608309. Epub 2023 Oct 18.
4
Py-Feat: Python Facial Expression Analysis Toolbox.Py-Feat:Python面部表情分析工具箱。
Affect Sci. 2023 Aug 8;4(4):781-796. doi: 10.1007/s42761-023-00191-4. eCollection 2023 Dec.
6
Inequality-Constrained 3D Morphable Face Model Fitting.不等式约束的三维可变形人脸模型拟合
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.
7
Toward the detection of reduced emotion expression intensity: an autism sibling study.朝向情绪表达强度降低的检测:自闭症同胞研究。
J Clin Exp Neuropsychol. 2023 May;45(3):219-229. doi: 10.1080/13803395.2023.2225234. Epub 2023 Jun 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验