Kumar Manoj, Yip Linda, Wang Fangyuan, Marty Saci-Elodie, Fathman C Garrison
Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States.
Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, United States.
Front Immunol. 2025 Aug 7;16:1626082. doi: 10.3389/fimmu.2025.1626082. eCollection 2025.
Autoimmune diseases are a diverse group of chronic disorders characterized by inappropriate immune responses against self-antigens, resulting in persistent inflammation and tissue destruction. Affecting an estimated 7-10% of the global population, these conditions include both systemic and organ-specific entities such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), and multiple sclerosis (MS). Despite their clinical heterogeneity, autoimmune diseases share a common etiologic framework involving the convergence of genetic predisposition, environmental exposures, and immune dysregulation. Genome-wide association studies (GWAS) have identified hundreds of risk loci, most notably within the major histocompatibility complex (MHC), and highlighted the role of non-HLA genes regulating cytokine signaling, antigen presentation, and T cell tolerance. The majority of disease-associated variants lie in non-coding regulatory elements, suggesting that transcriptional dysregulation plays a central role in disease susceptibility. Yet, genetics alone does not determine disease onset-environmental factors such as infections, diet, microbiome alterations, and hormonal influences critically shape immune responses and may trigger disease in genetically susceptible individuals. Additionally, epigenetic modifications further compound these effects, creating lasting changes in gene expression and immune cell function. At the core of autoimmune pathogenesis lies immune dysregulation, particularly failure of peripheral tolerance maintained by regulatory T cells (Tregs). While Treg frequencies may appear normal in patients, emerging data indicate intrinsic signaling defects-especially impaired IL-2 receptor (IL-2R) signal durability-compromise Treg suppressive function. This dysfunction is linked to aberrant degradation of key IL-2R second messengers, including phosphorylated JAK1 and DEPTOR, due to diminished expression of GRAIL, an E3 ligase that inhibits cullin RING ligase activation. This review integrates recent insights across genetic factors, environmental triggers, and immune dysregulation to build a comprehensive understanding of autoimmune disease pathogenesis. We propose a novel therapeutic strategy targeting IL-2R signaling using Neddylation Activating Enzyme inhibitors (NAEis) conjugated to IL-2 or anti-CD25 antibodies. This approach selectively restores Treg function and immune tolerance without inducing systemic immunosuppression. By focusing on immune restoration rather than suppression, This therapy could provide an off the shelf therapy for many different autoimmune diseases.
自身免疫性疾病是一类多样的慢性疾病,其特征是针对自身抗原产生不适当的免疫反应,导致持续性炎症和组织破坏。这些疾病估计影响全球7%至10%的人口,包括系统性和器官特异性疾病,如系统性红斑狼疮(SLE)、类风湿性关节炎(RA)、1型糖尿病(T1D)和多发性硬化症(MS)。尽管自身免疫性疾病在临床上具有异质性,但它们有一个共同的病因框架,涉及遗传易感性、环境暴露和免疫失调的共同作用。全基因组关联研究(GWAS)已经确定了数百个风险位点,最显著的是在主要组织相容性复合体(MHC)内,并突出了非HLA基因在调节细胞因子信号传导、抗原呈递和T细胞耐受性方面的作用。大多数与疾病相关的变异位于非编码调控元件中,这表明转录失调在疾病易感性中起核心作用。然而,仅靠遗传学并不能决定疾病的发生——环境因素,如感染、饮食、微生物群改变和激素影响,对免疫反应起着关键的塑造作用,并可能在基因易感个体中引发疾病。此外,表观遗传修饰进一步加剧了这些影响,在基因表达和免疫细胞功能方面产生了持久的变化。自身免疫性疾病发病机制的核心是免疫失调,特别是由调节性T细胞(Tregs)维持的外周耐受性的失败。虽然患者体内Treg频率可能看似正常,但新出现的数据表明存在内在信号缺陷——尤其是白细胞介素-2受体(IL-2R)信号耐久性受损——损害了Treg的抑制功能。这种功能障碍与关键IL-2R第二信使的异常降解有关,包括磷酸化的JAK1和DEPTOR,这是由于E3连接酶GRAIL表达减少所致,GRAIL可抑制cullin RING连接酶的激活。本综述整合了近期在遗传因素、环境触发因素和免疫失调方面的见解,以全面了解自身免疫性疾病的发病机制。我们提出了一种新的治疗策略,使用与IL-2或抗CD25抗体偶联的Neddylation激活酶抑制剂(NAEis)靶向IL-2R信号传导。这种方法选择性地恢复Treg功能和免疫耐受性,而不会诱导全身免疫抑制。通过专注于免疫恢复而非抑制,这种疗法可以为许多不同的自身免疫性疾病提供一种现成的治疗方法。