Sisley Tyler A, Park Youngseon, Santiago Ace George, Beroual Wanassa, Sobolewski Isabella A, Lee Wonsik, Paulo Joao A, Walker Suzanne
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.
School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
mBio. 2025 Aug 25:e0185825. doi: 10.1128/mbio.01858-25.
, a leading cause of serious infections, produces various factors important for intrinsic resistance to antibiotics. Understanding what intrinsic resistance factors do may enable strategies to potentiate existing antibiotics. The membrane protein AuxB is an intrinsic resistance factor that helps withstand diverse compounds that target the cell envelope, but its cellular functions are unknown. We show here that AuxB is a four-pass transmembrane protein with an intracellular C-terminus that interacts directly with the cytosolic cell cycle regulator GpsB. We also show AuxB's membrane domain forms a homodimer that exists in equilibrium with a heterodimer of AuxB and PknB, a eukaryotic-like serine/threonine kinase that has been implicated in cell envelope processes. Shifting the equilibrium to favor AuxB-bound PknB impairs growth on tunicamycin, a condition where PknB is essential, which suggests that AuxB binding antagonizes a PknB function. To link PknB's domains to compound susceptibility phenotypes, we assessed the fitness of PknB variants under several conditions. We find that PknB's extracellular and kinase domains are not functionally interdependent but instead play distinct roles in withstanding cell envelope stress. AuxB evidently antagonizes functions of PknB's extracellular PASTA (enicillin-binding protein nd er/hr kinase-ssociated) domain, the presence of which is beneficial under tunicamycin treatment regardless of whether the kinase domain is active. On compounds where the PASTA domain is deleterious, increasing the amount of AuxB-bound PknB can also ameliorate sensitivity. Collectively, our data suggest that AuxB, as a homodimer and through its interactions with GpsB and PknB, modulates cell envelope processes during cell growth and division.
is a leading cause of fatal infections worldwide. It encodes diverse genes that contribute to the organism's high intrinsic resistance to antibiotics. Understanding the biological roles of these genes and how their features contribute to intrinsic resistance may enable better antibiotic therapies. Here, we investigate AuxB, an intrinsic resistance factor to compounds that target the cell envelope. We find that AuxB interacts directly with the cell cycle regulator GpsB and the eukaryotic-like serine/threonine kinase PknB, another intrinsic resistance factor that is proposed to sense and respond to cell wall status. Based on our findings, we propose that AuxB impacts cell physiology through three mechanisms: (i) by antagonizing PknB's enicillin-binding protein nd er/hr kinase-ssociated domain function; (ii) by coordinating the phosphorylation of cell division proteins; and (iii) by forming a homodimer that interacts with GpsB hexamers to enable the formation of extended GpsB interaction networks.
作为严重感染的主要原因之一,会产生多种对抗生素固有抗性很重要的因子。了解固有抗性因子的作用可能有助于制定增强现有抗生素疗效的策略。膜蛋白AuxB是一种固有抗性因子,有助于抵御多种靶向细胞包膜的化合物,但其细胞功能尚不清楚。我们在此表明,AuxB是一种具有细胞内C末端的四次跨膜蛋白,它直接与胞质细胞周期调节因子GpsB相互作用。我们还表明,AuxB的膜结构域形成同二聚体,该同二聚体与AuxB和PknB的异二聚体处于平衡状态,PknB是一种与真核生物类似的丝氨酸/苏氨酸激酶,与细胞包膜过程有关。将平衡转向有利于AuxB结合的PknB会损害在衣霉素上的生长,衣霉素条件下PknB是必不可少的,这表明AuxB结合会拮抗PknB的功能。为了将PknB的结构域与化合物敏感性表型联系起来,我们评估了几种条件下PknB变体的适应性。我们发现,PknB的细胞外结构域和激酶结构域在功能上并非相互依赖,而是在抵御细胞包膜应激中发挥不同作用。AuxB显然拮抗PknB的细胞外PASTA(青霉素结合蛋白和激酶相关)结构域的功能,无论激酶结构域是否活跃,该结构域的存在在衣霉素处理下都是有益的。在PASTA结构域有害的化合物上,增加AuxB结合的PknB的量也可以改善敏感性。总体而言,我们的数据表明,AuxB作为同二聚体并通过其与GpsB和PknB的相互作用,在细胞生长和分裂过程中调节细胞包膜过程。
是全球致命感染的主要原因之一。它编码多种基因,这些基因导致该生物体对抗生素具有高度的固有抗性。了解这些基因的生物学作用以及它们的特征如何导致固有抗性,可能有助于实现更好的抗生素治疗。在这里,我们研究AuxB,一种对靶向细胞包膜的化合物的固有抗性因子。我们发现AuxB直接与细胞周期调节因子GpsB和与真核生物类似的丝氨酸/苏氨酸激酶PknB相互作用,PknB是另一种被认为可感知和响应细胞壁状态的固有抗性因子。基于我们的发现,我们提出AuxB通过三种机制影响细胞生理:(i)通过拮抗PknB的青霉素结合蛋白和激酶相关结构域的功能;(ii)通过协调细胞分裂蛋白的磷酸化;(iii)通过形成与GpsB六聚体相互作用的同二聚体,以形成扩展的GpsB相互作用网络。