Suppr超能文献

使用可穿戴传感器和机器学习对帕金森病的步态和姿势症状进行客观评估。

Objective assessment of gait and posture symptoms in Parkinson's disease using wearable sensors and machine learning.

作者信息

Ma Lingyan, Lin Shinuan, Jin Jianing, Wang Zhan, Wang Xuemei, Chen Zhonglue, Ling Yun, Zhang Fei, Ren Kang, Feng Tao

机构信息

Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Front Aging Neurosci. 2025 Aug 8;17:1618764. doi: 10.3389/fnagi.2025.1618764. eCollection 2025.

Abstract

OBJECTIVE

Gait and posture symptoms-such as gait impairments, postural instability, and posture deformations-are common in Parkinson's disease (PD) and closely linked to falls. Traditional assessments using clinical scales are time-consuming and prone to subjective bias. This study aims to predict the severity of gait and posture symptoms using data collected from wearable sensors during a single laboratory-based walking assessment, providing an objective, efficient, and automated evaluation approach.

METHODS

Sensor-based gait parameters were collected from 225 PD participants (mean age 63.15 ± 10.46 years) through a standardized walking assessment. The dataset was randomly split into a training set (80%) and an independent test set (20%) with balanced age, sex, and PD duration. Two machine learning models-extreme gradient boosting (XGBoost) and support vector machine (SVM)-were trained to predict scores for five gait and posture items (#3.9-3.13) from the MDS-UPDRS III.

RESULTS

XGBoost was chosen as the final model due to its better performance than SVM. Across all five gait and posture items, the models achieved over 80% acceptable accuracy. For items #3.9-#3.11, absolute accuracy surpassed 70%, and macro-F1 scores were above 0.60 in leave-one-out cross-validation (LOOCV). The model's performance on the independent test set matched LOOCV results, confirming robustness. A total of 35, 35, 30, 30, and 40 gait features were selected for the predictive models of items #3.9-#3.13, respectively. Among these, key features with significant clinical relevance were identified. For example, (R = 0.522,  < 0.001) had a positive correlation, while (R = -0.629,  < 0.001) had a negative correlation with scores on item #3.10. In addition, (R = 0.482,  < 0.001) had a positive correlation with scores on item #3.11. These findings align with known clinical manifestations, reinforcing the clinical relevance of the identified gait features.

CONCLUSION

This study demonstrates the feasibility of using wearable sensor data to objectively assess gait and posture symptoms in PD. Though conducted in a clinical setting, the approach may support clinicians through consistent assessments and more frequent monitoring, with potential for future home-based use to enable longitudinal symptom tracking.

摘要

目的

步态和姿势症状,如步态障碍、姿势不稳和姿势变形,在帕金森病(PD)中很常见,且与跌倒密切相关。使用临床量表进行的传统评估耗时且容易出现主观偏差。本研究旨在利用在基于实验室的单次步行评估期间从可穿戴传感器收集的数据预测步态和姿势症状的严重程度,提供一种客观、高效且自动化的评估方法。

方法

通过标准化步行评估从225名PD参与者(平均年龄63.15±10.46岁)收集基于传感器的步态参数。数据集被随机分为训练集(80%)和独立测试集(20%),年龄、性别和PD病程均衡。训练了两种机器学习模型——极端梯度提升(XGBoost)和支持向量机(SVM),以预测来自MDS-UPDRS III的五个步态和姿势项目(#3.9 - 3.13)的得分。

结果

由于XGBoost的性能优于SVM,因此被选为最终模型。在所有五个步态和姿势项目中,模型的可接受准确率超过80%。对于项目#3.9 - #3.11,绝对准确率超过70%,在留一法交叉验证(LOOCV)中宏F1得分高于0.60。模型在独立测试集上的性能与LOOCV结果匹配,证实了其稳健性。分别为项目#3.9 - #3.13的预测模型选择了总共35、35、30、30和40个步态特征。其中,确定了具有显著临床相关性的关键特征。例如,(R = 0.522,<0.001)与项目#3.10的得分呈正相关,而(R = -0.629,<0.001)与项目#3.10的得分呈负相关。此外,(R = 0.482,<0.001)与项目#3.11的得分呈正相关。这些发现与已知的临床表现一致,加强了所确定的步态特征的临床相关性。

结论

本研究证明了使用可穿戴传感器数据客观评估PD患者步态和姿势症状的可行性。尽管该研究是在临床环境中进行的,但该方法可以通过一致的评估和更频繁的监测为临床医生提供支持,并且未来有可能用于家庭,以实现纵向症状跟踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8814/12370646/bc93e609955f/fnagi-17-1618764-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验